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A countable group is N,-categorical if it can be characterized, up to isomor-
phism, within the class of countable groups, by its first-order properties. In
this paper we discuss various kinds of ¥ -categorical groups. There are five
main sections—on Abelian groups, on direct sums of finite groups, on groups
with large Abelian subgroups, on certain direct limits of finite groups, and on
Burnside groups—and an introduction intended to explicate the first sentence
of this paper and to lay the logical groundwork for what follows.

The following paragraphs convey the sort of results we have obtained in the
respective sections.

An Abelian groupis N,-categorical if and only if it is a group of bounded order.

Let G be a direct sum of copies of the finite groups Gy, Gz .. G, . Then G
is No-categorical if and only if every G which occurs infinitely often (in the direct
sum) is Abelian,

Tet G be an infinite group with a normal Abelian subgroup H of exponent
2 and index ¢; such a group is called an n — g group. Every n — ¢ group,
where # is square-free and g is prime, 18 ®,-categorical. In proving this theorem,
we also prove structure theorems for such groups.

Let H be 4 finite group, Then a certain direct limit of direct sums of copies
of H is Ng-categorical.

Let B(r, #) be the Burnside group of exponent n on 7 generators—where 7 is
allowed to take on the value Ro. If the Burnside conjecture is false for n, i.e.,
if for some rq, B(ro,n) is infinite, then for all 7, 7o < 7 < Ry, B(r, n) is not
R,-categorical. Furthermore, the Burnside group B(R,, p) is not N,-categorical,
for any odd prime p.

As can be seen from the theorems above (and even more from their proofs)
the determination of whether or not a particular group is W-categorical is
basically an algebraic, rather than a logical, problem, The class of R,-categorical
groups thus seems to be an object of algebraic interest; the main question to be
answered is whether or not this class can be characterized algebraically (as we
have done, e.g,, with the N,-categorical Abelinn groups). This paper is an initial
attempt to shed some light on this question.

Logicians have long been interested in N-categorical structures from a model-
theoretic point of view, The main theorem in the subject was proved (inde-
pendently) by Engeler (. Engeler, A characterization of theories with isomor-
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phic denumerabie models, Amer. Math. Soe. Notices 6 (1959), 161), Ryll-
Nardzewski (C. Ryll-Nardzewski, On the categoricity in power < N, , Bull.
Acad. Polon. Sci, Ser, Sci. Math. Astron.  Phys, 7 (1959), 545-548), and
Svenonius (L. Svenonius, Ny-categoricity in first-order predicate ecaleulus,
Theoria (Lund) 25, (1959), 82-94). Further investigations have been carried
out by Waskiewicz and Weglorz (], Waskiewicz and B, Weglorz, On N,-
categoricity of powers, Acad. Polon. Sei, Ser. Sei. Math., Astron, Plys. 17
(1969), 195-199), Rosenstein (J. G. Rosenstein, Ny-categoricity of linear
orderings, Fund. Math. 44 (1969),1-5), Glassmire (W. Glassmire, Jr., A Problem
in Categoricity, Amer. Math. Soc. Netices 17 (1970), 295), and Ash (C. J. Ash,
N,y-categorical theories, to appear). Nerode and Crossley (A, Nerode and
J. N. Crossley, Effective Dedekind Types, in preparation) have recently
observed that the work of Dekker, Myhill, and Nerode on recursive equivalence
types can be generalized to arbitrary R,-categorical structures, Theorem 2,
which was proved in 1968, has been used by Plotkin (). Plotkin, Generic
imbeddings, [, Svmbolic Logic 34 (1969), 388-394); it has also been proved
by Macintyre (A. Macintyre, Categoricity in power for some algebraic theories,
J. Symbolic Logic 35 (1970), 606) and Eklof and Fisher (P. Eklof and E. R.
Fisher, The Elementary Theory of Abelian Groups, to appear),

It is intended that both the logician and the group theorist should find
this paper essentially self-contained.

1. INTRODUCTION

A first order property is a property which can be formulated within the
first order predicate calculus, i.e. a property which can be written as a finite
expression involving only the group operations, the logical connectives (and,
or, not, if -+ then -+, iff), and quantifiers which range over elements (1) of the
group. Thus commutativity is a first order property (Ya)(Vy) (x - y = y - &),
whereas simplicity is apparently not since it involves the existence of a
normal subgroup and hence is formulated in terms of a so-called second-order
quantifier which ranges over sets of elements of the group. [Note the word
“apparently.” Just because the usual definition of a certain property involves
second-order quantifiers does not mean that there is no first order reformula-
tion of the property. For example, semisimplicity of a ring involves inter-
secting maximal ideals (second-orderl) but can be reformulated in terms of
elements (first order) as follows: (VE)EN(x + 3 + ay = 0).]

It might seem, at first glance, that a presentation of a group is in effect
a list of first order properties of the group. For a presentation consists of a set
of generators and a set of words on these generators (called defining relations),
and an understanding that every element of the group can be expressed as a
product of generators and that every relation of the group (i.e. every word
on the generators which equals the identity) can be expressed as a product
of defining relations and their conjugates; all of which appears to be first
order,
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However such a presentation cannot be easily expressed in the first order
predicate calculus. For to say that “‘a group is generated by a single element”
is to say that “there is an element x such that any element y can be expressed
as a power of x,”” which can be written

(Fx)(Vy)(An)(y = &)
or

@V vy=xlvy=avy=atvy=2atv )

neither of which are first order expressions (since, in the first, one of the
quantifiers ranges over the integers instead of over the elements in the group,
and, in the second, an infinite disjunction occurs.) [Note the word “easily.”
We have not yet proved that the property of being cyclic is not a first order
property; rather we have shown that the usual definition involves non-first-
order concepts. That ““cyclicness” is, in fact, not a first order property follows
from Theorem 1.] The difficulty above, of course, results from the fact that
the phrase “a product of” contains a hidden numerical quantifier. If the
cyclic group is finite, say of exponent #, then we can replace the quantifier
by a finite disjunction, viz.

@)V (y =evy=avy=atvy=2av - vy=2z"1l).

If it is infinite, we have no such opportunity.

We say that two groups are first order equivalent (elementarily equivalent)
if they have precisely the same first order properties. A countable group G
is X -categorical if any countable group which is elementarily equivalent
to G is isomorphic to G, so that G is ‘“‘characterized up to isomorphism,
within the class of countable groups, by its first order properties.”
For the purposes of this paper we shall assume that countable means
finite or countably infinite; note that no infinite group is elementarily
equivalent to any finite group, for any finite group has one of the first order
properties (3x;) -+ (I )(VY)[y =¥ VY = x, Vv - vV y = x,] whereas any
infinite group has none of them; note also that any finite group is X,-categorical
since we can, so to speak, transcribe its multiplication table into a first order
statement. [For example, for Z, X Z, we can write

Gx)( T AN Aw)x A YAX A IZAXFWAY FARAY FWAZFW
AV v =xvo=yvo=23vo=uw
A x=x)A(@ y=NA@ 2=2)A(x w=w)
Ay x=)Aa@y=0)A( - z=0)A(y w=27)
AMrx=2)A(z y=w)AR-2=%)A(x w=2)
Aw-x=a)Aw - y=2)A(w 2=9)A(w w=2x)}]
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The discussion of the preceding paragraphs leads us to the supposition
that although any group can be defined by means of a presentation, not every
group can be defined by first order properties. From this point of view, our
purpose in this paper is to determine which groups can be defined by their
first order properties.

Just as certain expressions were considered above as first order properties
of groups, so other expressions (involving the same symbols) can be thought
of as first order properties of elements—and ordered n-tuples of elements—of
groups. For example, the expression (Vao)(eyee — wo;) says that “o; is
the center,” (Jw)(v; = wlv,w) says that “ey is conjugate to oy ,"
(F)(Fy)(e, = a~Yy1xy) says that “o, is a commutator,” etc. The totality of
such expressions, involving only the variables v, , Ty yeeey ¥y Unquantified will
be denoted P, and can be thought of as the set of all first order properties
that an n-tuple of elements of a group may have.

For each group G and any positive number # we define an equivalence
relation on G* (the set of ordered n-tuples of elements of &) by stipulating
that if a, b e G then a is logically equivalent to b if they have precisely the
same first order properties as n-tuples of elements of G; we will write this
a = g b, or simply @ = b if there is no danger of confusion.

The main logical tool of this paper is a theorem due (independently) to
Engeler [4], Ryll-Nardzewski [15] and Svenonius [16] which states in effect
that G is Ny-categorical if and only if G*/ =g, i8 finite for each #. Thus to
show that G is not X-categorical it suffices to find, for some 7, an infinite
list {d; | i€ N} of distinct elements of G and an infinite list {¢ | JEN} of
distinct first order properties in P* such that d; has property ¢/ in G if and
only if £ = j. (We shall refer to this criterion as (#).)

Applying this result we can prove the following theorem about X,-cate-
gorical groups.

THEOREM 1. Let G be an 8y-categorical group. Then G is of bounded order,
i.e., there is an n such that g" = 1 for every g € G.

Proof. We first show that if G has an element g of infinite order then G is
not Ro-categorical. For let ¢/(v,, v,) be the first order property v, = oy’
for each j e N and let a; be <{g, g®> for each i € N. But if £ has infinite order
then clearly @, has property ¢/ iff i = j, so that G is not X,-categorical. Hence
every element of G has finite order. If these orders are unbounded then we can
find an increasing sequence 7, , , , 7, ,..., of natural numbers and a sequence
80181582 5+, of elements of G such that g; has order #, for each i. But then
we have a sequence {g;|ie N} of distinct elements of G and a sequence
{o1" = 1|j € N} of distinct first order properties such that g has property ¢/
iff # = j, so that again G is not R,-categorical. Hence there is a number 7 such
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that every element of G has order at most r. By taking the least common
multiple of the orders of elements of G we can find an # such that g» = 1
forevery ge G. |

DerINITION.  The least z such that g = 1 for all g € G, if such exists, will
be called the exponent of G.

To show that a group G is R-categorical it suffices to find a list T" of first
order properties which G has and which G shares with no different (i.e.,
nonisomorphic) countable group; for then any countable group which has all
the first order properties of G certainly has the properties of T and thus is
isomorphic to G. This set T' can be thought of as a set of axioms for G, or
as a first order definition of G, and is intrinsically of logical interest.

It is possible to give another, purely algebraic, necessary and sufficient
condition for a group to be X -categorical.

For each group G and any positive integer #, we define another equivalence
relation on G* by stipulating that if @ = {a; ,..., @, and b = by ..., by
are elements of G® then a and b are automorphically equivalent in G if there
is an automorphism of G which sends each a; to b; we will write this as
a ~g,, b, or simply a ~ b if there is no danger of confusion. It is possible
to show that if @ ~ b then a = b; the proof of this intuitively clear fact
requires, however, a more precise (hence more technical) definition of the
notion of first order property and so (since the logician will have seen it and
the algebraist will not want to see it) we omit the proof. The converse is false
in general.

Thus to show that G is X,-categorical it suffices to show that for each 7
there are a finite number k(z) of elements at, @?,..., a*™ of G™ such that any
element b € G* is automorphically equivalent to one of &', @2,..., @*™. On the
other hand it is possible to show (see Vaught [17]) that if G is ¥,-categorical
then a = b implies @ ~ b, so that for each n the number of equivalence
classes modulo ~,, is finite. (It should be noted however that this criterion is
by no means necessarily easier, in an absolute sense, to apply, and that it
just gives a determination as to whether or not the group is Rg-categorical,
with no indication as to how to find a set of axioms for G.) We shall make
little explicit use of this criterion, but the algebraically oriented reader can
use it to give different proofs of some of our theorems.

The reader should be cautioned in one regard. It is not possible to expect the
set of first order properties of a group to characterize it, up to isomorphism,
within the class of all groups. For the Lowenheim-Skolem Theorem implies
that given any infinite group there are uncountable groups which are
indistinguishable from it in the first order predicate calculus. Those who wish
to pursue this matter may refer to [2] or [9].

We wish to call the reader’s attention at this point to several abbreviations
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and conventions we shall adopt in this paper. If I is a finite set, and for each
t€l,¢; is an expression of the first order predicate calculus, then we shall
write A ¢; for the conjunction of the ¢;’s and V,.;¢; for the disjunction
of theg;’s. If (, 2, ,..., %) is an expression of the first order predicate calculus
in which the variable x is free we shall abbreviate

@)@ @ [ A o mmmd A A 3£

1<i<n 1<i<i<<n

to (3 =" x) §(x, %y ,..., ¥;) and we shall use (3! x) $(x, %; ,..., x;) instead of
(3 =" %) (%, %y yoer, X3) A (~(3 =" &) P2, %y 4100, X)),

A set of statements which is consistent will sometimes be called a theory.
If Gis a group and T is a theory we will say that G is a model of T, written
G = T, if each of the statements in T'is in fact a property of G. If ¢ € P» and
a=<{ay,..,a,y€G" then G =d[a,,ay,...,a,] will be used if a has
property ¢ in G. [All of these notions can be made excruciatingly precise,
and the reader who wishes to pursue these notions can refer to [2] or [91-]

Since we will be dealing only with countable groups we will henceforth
assume that all groups are countable.

In presenting a group we will use the notation {** ; ---}. The symbols to the
left of the semicolon will be the generators of the group and the equations to
the right will be the defining relations of the group.

2. ABELIAN GRoOUPS

If a group which is of bounded order happens also to be Abelian, then its
structure is easily determined. In fact an Abelian group of bounded order is a
direct sum of cyclic groups whose orders are powers of primes (see Kaplansky
[7, p. 17]). Using this information we can prove the following converse to
Theorem 1.

THEOREM 2. Any Abelian group M of bounded order is Ry-categorical.

Proof. Since M is Abelian, we shall take the liberty of switching to additive
notation. Let # be such that na = 0 for all @ € M. Write M as a direct sum of
cyclic groups of prime power order; each of the summands has order < .
Assume that for each ¢ <{ n there are exactly s, summands of order .
Thus s, = 0 if ¢ is not a prime power and s, = = if there are infinitely
many summands of order t. Thus M = 22<t<n M, , where each

Zo <j<s, M{ and each M is a cyclic group of order ¢.

We shall deﬁne a set T, of statements such that M = T,, and such that

if N &= T, then M ~ N. The set T}, of statements in our original manuscript
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expressed, in a first-order way, that, for each ¢, M had exactly s; summands of
order #. The referee observed that the proof could be somewhat shortened
if the {s, | £ > 1} were viewed instead as the Ulm invariants.

Thus, following Kaplansky [7, p. 27], we define

M, ; = p*M for each prime p and & > 1;
P, = {x | px = 0} for each prime p;
P, = P,N M, , for each prime p and & > 1;

and
fo(k — 1) = dim(P,, 5_1/P,,;) for each prime p and & = L.

Ulm’s Theorem, together with the fact that an Abelian torsion group isa
direct sum of primary groups, implies that an Abelian group of bounded
order is completely determined by the Ulm invariants { f(k — 1) | p prime,
k> 1}

Now if ¢ = p* then s, = f,(k — 1) so that, instead of saying that M has
exactly s, summands of order ¢, it suffices to say that the dimension of
P, %1/Pp.: is 5, . But, for any > 0, the statement

O(p, 7): Ga)Emg) @) [ A (9% = 0 A @a)lwa = 2790)

2<a<<p”

AN (~@E8)(p5 = O A G)e = PH0) A 30 = 1)

2<a<h<p”
says that there are at least p — 1 elements of order p which are divisible
by p* and unequal modulo P, —or, in other words, @(p,r) says that
S =T
We define, for each t < n, a set @, of statements. If ¢ is not a prime power
then @, = @ ; assume then that ¢ = p*.

Case 1. s, = 0. Then @, consists of the single statement

~(3x)(px = 0 A ()@ = p*7)).

Case2. 0 < s, < w. Then ®, consists of the single statement
D(p, 5;) A ~D(p, s, + 1).

Case 3. s, = w. Then @, = {®(p,7)|r > O}

Now let Ty = Uscicn P; U {(Va)(nx = 0)} U {AG} where AG is the
standard set of axioms for an Abelian group. It is clear that M = Ty and
that, using Ulm’s theorem, if N is a coutable model of Ty, then N ~ M.
Hence M is R,-categorical. I
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3. Direcr Sums oF Fintte Groups

The situation with non-Abelian groups is quite different. One might
suppose that since, for example, a direct sum of w copies of Z, is N, -categorical,
s0 would be a direct sum of w copics of Sy (the symmetric group on three
letters.) More generally one might suppose that if one took a direct sum of
groups, each selected from the collection of groups of order < some fixed n,
then the group obtained would be R-categorical. These conclusions would be
far from correct.

TueOREM 3. Let G = Zj%v H; where each H; is isomorphic to a group G,
of order < n. Then G is Ry-categorical iff every G; which occurs infinitely often
is Abelian.

Proof. Suppose that G, occurs infinitely often and is not Abelian. Let
a, b € G, be such that b-1gb £ a: let m be the number of conjugates of a in
G;. Assume that the groups HH » H, ... are all isomorphic to G; and that
the images of @ under these isomorphisms are @ 5 @y, yee - Let ve G; then v
can be written as M)"; where b, € H ¢ and ke Z,._(’E,-I H,; . Hence any conjugate
v ray v of a; can be written irlb‘{lla,lb,l!r == b,-‘lla,-l:’;,l , 50 that @ has precisely m
conjugates in G. More generally, v can be written as 1’;.‘!»,‘15,i “*+ b; where
b; € H,-f and £ EZ,‘#,‘I__,._% H; so

vila,a;, a4y = (bi_lla,-lbil)(b;aizbiz) e (b abs)
so that a, v a has precisely m* conjugates in 3® H, .
If we now let ¢%(v,) be (setting &’ = m®)

(@y1)@y2) - @)

/\ (yz'_l'vlyi 7= J’:‘_l'zhya') A (Vz) (v 3_1”13 = y:i—l'vlyi)]

1< <i<h’

and if we let d,, be a;a;, - a; for each & we have an infinite list of distinct
first order properties of P! and an infinite list of distinct elements of G such
that d; has property ¢/ in G if and only if ; = J- Hence by (#) the group G is
not X,-categorical.

Conversely if every G; which occurs infinitely often is Abelian then we can
write G = K, & K, where K, is an Abelian group of bounded order and K,
is finite. Since K, is N,-categorical (by Theorem 2) and K, is R,-categorical
(as shown in Section 1) we need only prove that a finite direct sum of Ny-cate-
gorical groups is N,-categorical. Hence the converse is a consequence of the
next theorem. |
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TuroreM 4. If Gy, Gy ..., Gy, are X,-categorical groups, then

G = Gl@Gz@"'@Gk
is Ry-categorical.

Proof. Since each G is R,-categorical, we can find sets T of statements
such that for each 4 if M |= T, then M ~ G;. We wish to say that for each
i, the group G contains a subgroup which is a model of T; . To do this we add
to the language of group theory & new unary relation symbols Q5 , Q5 5., Qs
and in this expanded language say that the elements satisfying Q; form a
model of T, . To say this we “‘relativize” the statements of T to Q; . That is
to say, we replace, in each statement of T , each quantifier of form (Va)(:**)
by (Vx)(Q«x) = ) and each quantifier of form (3x)(-**) by (Fx)(Qu®) A =)
for example, the relativization of the statement (Vao)(3y)(y~wy # x) to O is
(V)0i®) = ENQH) A ¥y 7 2):

We define the set T* of statements to consist of the axioms of group theory
together with, for each 7, the axioms of T relativized to Q; and the statements

A [¥R)(¥9)(Qul) A Oi(y) = 27 = y%));

(Vo) (V) -+ (V) (V) ¥5) - (¥
[A Q) A Qup) A i = 3139w = N (85 = »9);

and

(F)@)) - @) (A Q) A 3 = 130 i)

A model of T* consists of a group H together with k distinguished subsets
Hy; Hyyoiis Hy - Qince 1% contains the relativizations of the statements of
T, to O, it follows that each H; is a subgroup of H which is a model of T and
hence is isomorphic to G; . The additional statements of 7% guarantec that
the group H is the direct sum H, @ H, @ D Hy, and therefore that
H~G.

Thus we have shown that the group G, when considered in conjunction
with the distinguished subgroups G , Gy yoey Gy, can be characterized by
its first order properties expressed in an expanded language. That is to say, if
H is any group which, together with & distinguished subsets I , Iy ,..., H,,
has the same first order properties as G, together with Gy, Gy ..y (). then
H ~ G by an isomorphism which maps each H, isomorphically onto G
We can thus say that the “expanded” group (G, G, Gy .ry Gy is Ry-cate-
gorical. That this implies that G is N,-categorical is a consequence of the
lemma below. [
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Lemma 1. Let G be a group; let H, , H, ..., H, be subsets of G and let
815 82 s+ £1 be elements of G. Suppose we add to the language of group theory k
new unary relation symbols Q, , Q, ..., Oy and I new individual constant syvmbols
@1, Gy 5.y @y . Let T* be the set of statements in this expanded language which
are properties of the group G together with the designated subsets I, By ooy H,
and elements g, , g, ..., &1+ Suppose further that if the group G together with
the designated subsets H,’, 1,,..., Hy' and elements &' & s 8 also is @ model
of T then there is an isomorphism f: G — G’ such that S(H;) = H; for
I <@ <k and such that f (8 =g/ for 1 <i <L Then G is Ry-categorical.

Proof. We define an equivalence relation on G» by stipulating that if g,
beG"then a is logically* equivalent to 5 if they have precisely the same first
order properties (with respect to the expanded language, where each Q; is
interpreted as the set H; and cach a; is interpreted as the element 2 as
n-tuples of elements of G.

Then, by the general version of the theorem quoted in the introduction,
since the hypothesis of the lemma asserts that, as an interpretation of the
expanded language, G together with [, , M, ,..., Hy and g ,g,,.., 8 is
Ry-categorical, it follows that for each #, the equivalence relation partitions G'»
into a finite number of pieces. But if & is logically* equivalent to #, then
certainly @ is logically equivalent to b. Hence the equivalence relation “¢ is
logically equivalent to 4" partitions G" into fewer pieces than the equivalence
relation “a is logically* equivalent to 5.” Hence G*/=4,, is finite for every n,
so again using the theorem of Engeler, Ryll-Nardzewski, and Svenonius, G
is Ry-categorical. |

It should be noted that we have not actually presented a list of axioms (in
the language of group theory) which characterizes the group G of Theorem 4.
One could however obtain such a list of axioms, recursively, by taki ng the set
of all statements in the language of group theory which are logical conse-
quences of T*, In specific cases it is possible to give a nice presentation of the
axioms for G in terms of the axioms for the direct summands. The proof of
Theorem 2, for example, can be recast in terms of the above and there the
axioms for M = 22@@ <n M, can be obtained directly from the axioms for
the M, .

4. Groups wiTH LARGE ABELIAN SUBGROUPS

The results of the previous section suggest that if a group G has a normal
Abelian subgroup H of finite index then G is Ry-categorical if H is. In this
section we examine this conjecture.

We shall start by presenting two examples of such groups.
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ExampLe 1. Let G be the group generated by {x} U {a; | i€ N} subject to
the relations
a? = a,a; = a;a;

¥ =1 xax=ad

We first observe that the subgroup H of G generated by {a; |i eN}is a
normal Abelian subgroup of index 2 which is ¥-categorical since it is an
Abelian group of bounded order. Thus we might conjecture that G is
X,-categorical. On the other hand for cach i the subgroup of G generated by ¥
and a; is isomorphic to Sy so that G is the direct sum of infinitely many copies
of S, with an amalgamated subgroup, and theorem 3 shows that a direct sum
of infinitely many copies of Sy is not R,-categorical.

Let us show that G is R-categorical. First note that G = H U Hyx, that
y & H implies y* = 1, and that y € Hx implies that y = a; " @ x 80 that

YE =yt XAyt A X = Ay aik(xal-lx)(xaizx) e (xagx) = 1.

Thus y € Hif and only if 3 = 1.
Now let T consist of

(i) the axioms of group theory,
() (YR =1 as>=1) = ay = ya],

(i) @x)@n) - @) (A#d = 1A Awi# x,), for each k,
i intd
(V) @)WOP=1v@ENy=axr22=D)A@E=1)A
(W)(? =1 = ayx = ¥*))-
It is clear that G |= T and that if G' =T then G’ ~ G. Hence G is
R,-categorical. ||

ExampLe 2. Let G be the group generated by {x} U {a; |1 € N} subject to
the relations

at=1 a;a; = a;a;
2 _ 2
x? =1 xXax = a;d;,

We claim that the subgroup H generated by {a; | i€ N}is a normal Abelian
subgroup of G of finite index, that / is R -categorical, but that G is not. That
H is 2 normal Abelian subgroup of G of finite index is clear; and, since 1 is a
homomorphic image of a direct sum of infinitely many eyclic groups of order
four, H is of bounded order, so that H is N,-categorical.

To show that G is not R,-categorical we need to know that [ is actually
Z? ' {a,}. (Note that the addition of the element x, and the relations involving
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it, to Z,-@ {a;} could conceivably disturb this sum. For example, if we were
to replace xa,x = a,a? +1 by xa,x = a,a,,, we would then have

a; = x(xax)x = (vax)(xa;, %) = @131,
sothat a},; = a,,, , a relation which certainl does not hold in 2 {4.1.
i+1 i+2 y i %

Lemma 23, H = 21@ {a;}.

Proof. It suffices to show that for each word

w = a;la;? - af
where 4, <4, < - <, and where each c;€{1, 2,3}, there is a homo-
morphism 4: G — G* whose kernel does not include . If some ¢; is odd then
we define 4: G — Z, by ha;) =1, k(a;) = 0 forj + i,, h(x) = 0; it is easy
to verify that / is a homomorphism and that w is not in the kernel of 4. The
case where each ¢; = 2 is a little more difficult and requires the introduction
of a new group G*.

Consider the group G* with the presentation {a, b, y;at = 1, % = 1,
¥t =1, ba = ab, ya = ay, by = ba?}. Given any word in the generators, it
it can be written in the form @’b'y* where 0 <{ < 4, 0 <j <2, and
0 <X £ < 2, s0 that the number of elements in G* is at most 16. We wish to
show that G* actually has 16 elements so that no two distinct words of the
above form are equal. So we map G* into the symmetric group Sy by mapping

a— (1234)(5678) = a*
b — (13)(24) = b*
¥ = (15)(26)(37)(48) = y*

and verifying that a*, b*, and ¥* satisfy the presenting relations for a,b,and y,
and furthermore that there are 16 distinct permutations generated by a*, b*,
and y*. From this it follows that G* has 16 elements. In particular a2 is not
the identity in G*,

Now define a map 4: G — G* by ha;) = a, Ma; 1) = b, k(a;) = 1 for
t %1, 4 —1, and A(x) = y. This map is a homomorphism which maps
W = afla? - a* to a?, which, by the paragraph above, is not the identity in

1 *2 k @ -

G*. We have thus completed the proof that H — > {a;}. In particular we
know that a2 = g% if and onlyifi =j. |

We now proceed to show that G is not R,-categorical. We let ¢*(v, , v,) be

(Fs1)(3sa) - G @) yory = vis,% A Y51y = 81552
AUAYE Y =SSt A S =AY =152 £ 1]
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and we let d,, be {ay , @, for each k. It suffices to show that d; has property
¢ in Gifand only if i = j, for we can then apply (#) to conclude that G is not
R,-categorical. We first prove the following lemma.

LevMA 2b. If 9, #1, 75,0y T G1E elements of G such that ya;y = ar’®
Yy = FiFstes, Yoy = rp_ytit and if y* = 1 and r? # 1 thenr? = ape

Praof. We first claim that xa,x = @yry®, Ay = PiFolees X g ¥ = Tr_ati2e
For if y & H then since y* = | we have ya, ¥ = a, so thatr,® = 1 contrary to

2

assumption. On the other hand if y & Hy then y = abaf -~ dxand a simple
caleulation of ¥* shows that each 7, is even, But each a? is in the center of G,
hence ¥ = =& where % is in the center of G and has order 2. Hence yry =
(ax)r(zx) = arx for each r G. Thus the claim is proven.

We now proceed by ind uetion on k. If £ = 1 then aya,® = Xayx = a,r4% 50
that r,® = a,% Assume that r = ai,; . We first observe, by a direct calcula-
tion, that if r; € Hx so that r; = ahralp -+ afx then 7,® cannot be a2,;,and
hence that r; € [1. But then either

ry = a1+:iazg1az?2 a'ft or r; = aiof+ia%1¢1%2 “?, .
In the first case,
Xrix = (xa1+,-x)(xa,-1x)2 (Mi,x)z = a1+5“§+i“12'1 a?, = Tiagw s
and in the second case,
xXrx% = (xa1+!ix)3(xai1x)2 (x“i,x)z = 1)a5 -

— g2 2 _ 2
But xrx = 7,75, - Lherefore, 7j,4 = 245 and that proves the lemma. [|

Now it is clear that d;, has property ¢*. Conversely if {a, , a,,;> has property
47, then by Lemma 2b, al,; = a},; . But Lemma 2a implies that ¢ = j. Hence
d, has property ¢/ if and only if i = j. Hence G is not R,-categorical. i

These two examples show, on the one hand, that the conjecture at the
beginning of this section is not correct, and, on the other hand, that the
determination of whether a given group satisfying the hypotheses of the
conjecture is X,-categorical may be difficult indeed. It appears to be at least as
difficult to establish necessary and sufficient conditions for such groups to be
X,-categorical. In the remainder of this section, we present a number of
theorems in this direction.

For the sake of avoiding endless repetition of hypotheses, let us call a group
G an n — k group if G has a normal Abelian subgroup H of exponent and
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index &, and if G/H is cyclic. Thus, in particular, ann — % group is metabelian.
(We will not discuss the case where G/H is not cyclic.) We are interested in
determining for which pairs {m, k) it is true that an n — % group must be
N,-categorical.

Example 2 shows that a 4 — 2 group need not be ®y-categorical. Qur first
result in the other direction was that every p — 2 group is N,-categorical,
for every prime p. We prove here a generalization of this theorem. As with
subsequent theorems, the proof is divided into two parts. The first part,
separated off as a proposition, provides a group-theoretic analysis of the groups
discussed in the theorem; the second part consists of translating the results of
this analysis into statements of the f rst-order predicate calculus.

ProposiTioN 1. Let G be a P — k group where p is a prime and [p—1
so that Z, contains a primitive k-th root of unity. Let x € G be such that
G=HUHxUHx2U U Hx" and let 1 = p,, My s fg yeeny Ppey De the
k-th roots of unity in Zy . Then there are subgroups H, , Hy ,..., H,_, each
normal in G such that H — Z(,@@ <xHy and such that for each zeH,,
alax = g,

Proof. For each i, 0 <t < k, let Hy = {zeH|x1lex — 2}, Note
that 77, < G. Furthermore H, < G for if % € H, then, by induction on j,
adgai — gn' (where o = p,) so that every conjugate of 2 is a power of z and
hence is in H, . (Note also that if x-1ew — g then z = x~%awk — 2¢* g0 that
¢® = 1 (mod p) so that ¢ must be a -th root of unity in Z,, .)

We wish to show that H — Z&t <xH;. Our first observation is that
Do<i<i Hy = Z&Kk H, . To prove this we need only verify that if 2, € H,

for each ¢ then 2,2, **+ 2, — | implies 2; = 2, = -+ — 2; = 1. So choose a
representation of 1 in which as few as possible > 2 of the z, are unequal to 1.
Suppose that 2, = g, = - — Z-1 = 1 and that %; 7 1. Hence
Heg He Hy
0 0 .., [ —
Rty Stgr1 T Ry = L.
But
—l! N . =
I =« Pl T B = By Bipt1 Ry -
Therefore,
Fegr1—He Pr—17Hy,
— 0 0 ... (]
I = Bgptl %1

is a representation of 1 in which fewer 2,’s are unequal to 1. This is, of course,
a contradiction,
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It remains to show that H C X<t < H; - Let 2, € H and define z; = &7%3,x*
for each i < k so that 2;,, = x~'2;x. Then for each t,

= —{k—1)
-1 iy oM T
xR RY ®y X
-1 —(k—2) ,—(k-1) -1 -2 —(k—1).
— A I b b — IR 3
= 23, % %1 Ro = [231" 2 EAR
so that
—1 -2 —(k—1)
iy oMt T .. oMt
2,24 Ry 2yt €H, for each t.
Thus for each ¢,
o =zt g e Y H
t . T0%L 72 k-1 t
o<t<k
To show that z,€ X<y H; it suffices to solve 2, = Boct «++ (kg for
by » by .., by . In other words, to solve the simultaneous linear equations:
by + by + o b =1

bopo bypg A + bp_ypp1 = 0
boro: + bysy® + + by_yps g = 0) (mod p);

bt ™t 4 byl A by = O

or in other words to show that the matrix

1 1 1 L |
Mo 251 Ho f"lé—l
Pa? Y po? R R |

k-1 k-1 k=1 k-1
o M1 Ha et
is invertible in Z, . But this matrix is a Vandermonde matrix whose deter-

minant is [ To<: <y <x (ks — p:) Which is not zero.
Hence H C 3y« <y Hy and therefore H = Zoit <z Hy as claimed. [}

Thus to each p — k group G where p is a prime and k|p — 1 we can
assign a sequence (g , My 5.+ my_y> of cardinals <C R, by setting m; equal to
the number of basis elements in H; .

We note that for each such sequence there is a corresponding p — k group,
namely the group generated by {x} U fa; 10 <t < k A1 << my} subject to
the relations x* = 1, aft =1, ad = da, x'a;x = apt. We also note that
the group G is completely determined by this sequence. We now must
show that these invariants can be carried into the first-order predicate calculus.
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THEOREM 5. Let G be a p — k group where p is a prime and k| p — 1.
Then G is 8y-categorical.

Proof. We will present a set of axioms for the group G formulated
in the language of group theory augmented by 4 unary relation symbols
Ry, Ry .y Ry and a constant symbol a. These axioms will uniquely
determine G (together with H, Hy ..., H;_, and x) so that applying
Lemma | we conclude that G is R,-categorical,

The fact that G satisfies the axioms given below is a consequence of
Proposition |,

The axioms T for G will include the following:

(i) the axioms for group theory,
() A (DR(y) = 37 = 1),
t

(i) A (WD)Re(31) A Ry(32) = 3195 = 9a3),

() (90)93) = (09) [ (A R A 30337+ 91a = 1)

= /t\yt = 1]’
@) A W)VR)R() A Rz) = R(32) A R(yD),
SRWRE

(vil) (V&) (Byo)(Fyn) - (Fye_a) [/t\ R y)n V x=yum "-yk_la"],

0i<k

i) () ([V R VRO = [ A a2 901]),

0<i<i<k

() @ =1 (¥) /t\ (Ryz) = a~'za — 29)].

The remaining axioms depend on the group G; more specifically on the
SEqUENCe (mty , My ..., My_,) associated with G. For each ¢, if my is finite we
add the following axiom;
(x)  (3@*™y) Ry(y).
For each ¢ for which m, is infinite we add the statements
(xi)n 3 ="2) R(y).

It is clear that this set of statements does what was claimed; hence by
Lemma 1 the group G is ,-categorical. [ |
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In attempting to generalize Theorem 5 there are several requirements that
could be relaxed. One, we could not insist that p be a prime. Two, we could
not insist that & | p — 1. (Three, we could not insist that G/[H be cyclic. As
mentioned earlier this case will not be considered here.)

We shall first consider the situation when we relax the requirement that p
be a prime.

TuroREM 6. Let n be square-free and assume that k| p — 1 for each p | n.
Then every n — k group G is R,-categorical.

Proof. For each prime p | #, let H» ={he H|h =1}. Letxe G, s* =1,
be such that G — H U Ha U - U Hx**, Then since (¥~1h)? = a v =1
and since H <1 G it follows that each H* <1 G. Also Il = Zg}lﬂ H" and the
group G, generated by H” and x is a p — k group which is R,-categorical
by ‘Theorem 5. Accordingly, with each G, we have associated invariants
{amg?, My Py M1

We will present a set of axioms for the group G in the language of group
theory augmented by 7k unary relation symbols {Rjf |0 <t < kAl i< r},
where # = py Py Py » and one constant symbol a.

Tor each 4, 1 << i <_r, we write down, using the relation symbols
Ry, Ryt,..., R}y and the constant symbol 4, the set of statements T given
for a p; — k group with invariants (g, mys,..., mpiy» in the proof of the
preceding theorem. We let 7' be the union of these statements, deleting each
axiom (vii), together with the statements

(xii)  (Va)(Ey) @) - Gyi-n)@i)@ye) -+ @)

(Hyor)(aylr) <+ (Iy1) [A Ri(y4) /\0 V (x = (1_[ yti) . a")]

<j<k 1,

Gai) () ( A (Ri) A RIG) >y =)

(t,00#<8,8?

Gaiv) () (A (R & RA) = 5y = 33)

ty2,8,d

(xv)  (Vp)(Vy2) = (V)

(/\ Y (Rti(yi)’\y1yz"’yr ——:l):>(y1:l/\y2: 1A "‘/\y1-=:1)).

Tt is clear that this set of statements is ®,-categorical; and hence by
Temma 1 of Section 3 the group G is Ry-categorical. |
Before we try to further generalize 'Theorem 6 let us consider the case
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THEOREM 11. Eweryn — 3 group G, where nis square-free, is 8,-categorical.

The methods used thus far in this section can be extended to obtain the
same results for every n — g group G, where 7 is square-free and ¢ is a prime.

THEOREM 12. Let p and q be primes. Then any p — q group G is Ry-cate-
gorical.

Proof. There are three distinct cases: (1) ¢|p— 1; (2) ¢+p — 1 and
q # p; (3) ¢ = p. For each of these three cases we must provide a group-
theoretic analysis of p — ¢ groups and translate this analysis into the first-order
predicate calculus. Case 1 has already been dealt with in Proposition 1.
Cases 2 and 3 respectively depend on Propositions 3’ and 4’ below, whose
proofs are generalizations of the proofs of Propositions 3 and 4 and are
therefore omitted. [

"The following corollary can be obtained by combining Theorem 12 with

the proof of Theorem 6.

THEOREM 13. Let n be square-free and q a prime. Then every n — q group G
1s Ry-categorical.

PropostrioN 3'.  Let p and g be primes such that ¢+ p — 1 and q # p. Let
Gbeap — qgroup. Then there are subgroups Z, and B of H such that:

() Z=jzcH|@a)Ea) - (Fagr) (A i H
A N *lax = aa, '
A x—la x = a—(a) (a) q—2_2) i 1)z);
={zeH|x2x = z};
(i) B= @EHH%QWG%Q(AQEH

A N\ xlax = aa;,

00 .. G ),

Axla,_x = a a, i %a,
(i) Z, <G, B < G;
(iv) H=2,® B;
(2
(v) B =) B, where, for eachicl,
el

B; <1 G and is generated by exactly ¢ — 1 elements.
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ProrosiTioN 4'. Let G be a p — p group. Then there are subgroups
Z\, Zy Z,2, Z2,..., ZP71, ZB Y, C of H such that

() H=Z2/'@L'QZ2DZ D~ LD Z @ C;
(i) Z) P Z ={zeH|a'2x = 2};
(i) Z' D23 @ - D27 Dz
= zbo € H | (3b,)(3by) -+~ (3b,) [0</j\<i ¥t = bby,,

A x b = bi]g;

(iv) Z,={zecH|@b)becHA xbx = b2) A x~'zx = 3};
") Z D2 D @ Ly = {beH|(a)(xtax = ab)};

(vi) the map g: C — Z37* defined by g(a) = b if x~lax = ab is an iso-
morphism;

(vil); the map f;: Zy™ @ Zi™ — Zi defined by f(b) = = if x~bx = bz
is an isomorphism.

Proof. 'The proofs of these propositions are generalizations of the proofs
of Propositions 3 and 4 and are left to the reader.

Before concluding this section, we will present one result which is particu-
larly useful for certain n — & groups where the hypotheses of the various
theorems above do not hold, for example when 7 is not square-free.

THEOREM 14. Let G be a group with a normal Abelian subgroup H of finite
index. Assume that there is a natural number M such that for each h € H there
are subgroups H,, and Hy* of H which are normal in G such that H = H, D H,*,
heHy,and | H, | < M. Then G is Ry-categorical.

Proof. By repeated use of the hypotheses we can write H = Z,;GEN H;
where H, << G and | H;| < M for each i. Let K << G be such that
G = pex Hx, and let G; = zex Hx for each 7. Define G; ~ Gj if there
is an isomorphism between them which fixes each of the elements of K.
Since | G;| < M - | K| for each i, there are only a finite number of
equivalence classes.

Let us assume for the moment that there is but one equivalence class. Let
K ={l,x%,%,,..,x,} and let ¢(v, , v, ,..., ,) be a property, in the language
obtained by adding ¢ + 1 constant symbols a, , 4, ,..., @, , which says that the
n(g +- 1) elements of the form v, (1 <5 < n, 0 < ¢ < ¢) are all different
and form a group isomorphic to G, where the v,’s form the subgroup H, and
the a,’s form the subgroup XK.
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Let the set T of statements consist of the axioms of group theory together
with the statements (for each m)

(Eont) -+ @ond) = @orm) - @) [ A #ord, o 04)

1<isim

AN @5 = gy

1,8,27,8"

A A (Vv v, =1 > 0l=1r02=1
B1981s0enslp Spt

A Aol =1Aa,= 1) A (Yo)| \ vilol - via, + w

= (For)(E0) -+ (30,) [¢(v1 ) O s )
AN /\ Vil o vika, £ v, A\ ool e oltoe, = w]ﬂ

Then, using Lemma 1, we conclude that G is ¥,-categorical.

If there is more than one equivalence class we use the same technique
used in Theorem 4, or more recently in Theorem 8, to construct a set 7" of
statements for the whole group out of the sets of statements for the
components. [

It should be noted that Theorem 12 does not include Theorem 5; for
example, in the group G of Theorem 6, if we take & = g, then {a, , 2,} form
a normal subgroup H, <1 G. But the remainder of H, i.e. that generated by
the remaining generators, does not form a normal subgroup of G, since
Xaux = a,%, . This situation is typical, and, in some sense, the point of the
proofs of the theorems in this section is to get around such situations.

5. Direcr Limits oF FINITE GROUPS

In {13] we showed that the group GL,(B), where B is a countable atomless
Boolean ring, is ¥, -categorical. In this section we shall claim that any group
so constructed is also ®,-categorical.

Let H be a finite group and for each n € N let H™ be the direct sum of 2?
copies of H. For each n deﬁne o, H®W — H™ by (0,(x)); = (a)[,/z] for
eachj, 0 << j < 2" (Ifa e ZZ . G then (), is the component of « in' G; .)
Thus, for example, if <a, b, c,d> € H® then

oy(<a, b, ¢, d>) = {a,a,b, b, ¢, c,d,d>c H®.

It is clear that each o, is a monomorphism from H™ to H®+), Furthermore
if for each m and n, with m < n, we define o,,, to be 0,,_; *** 0,10, then a,,,



R,-CATEGORICITY OF GROUPS 463

is 2 monomorphism from H( to H™, Thus {H™ | n € N} together with the
monomorphisms {o,,, | m < n} form a direct system of groups.

Let HR the direct limit of this direct system. In [13] we showed that if
H = 8, then HR ~ GL,(B) where B is a countable atomless Boolean ring.
We used this description of HR (together with the fact that such a ring is
X,-categorical, any two countable atomless Boolean rings being isomorphic)
to show that S3R is ¥,-categorical. But this is true in general.

TuroreMm 15. Let H be any finite group. Then the group HR is R,-categorical.

We will not present a proof of this theorem here. We had intended to
prove a generalized version of this theorem elsewhere, but have since been
informed by Philip Olin that Theorem 15 and its generalization are a conse-
quence of the work of Waskiewicz and Weglorz [18].

6. BURNSIDE GROUPS

Another class of groups of bounded order, which could provide further
examples of N -categorical groups, is the class of Burnside groups. Let
B(n, r) be the Burnside group of exponent 7 on 7 generators. The Burnside
conjecture for 7 is that B(n, r) is finite for all 7. The Burnside conjecture is
known to be true for n = 3, 4, 6 (see Hall [6, Chap. 18]) and to be false for all
odd n > 4381 (see Novikov and Adjan [11]). For the remaining values of #,
it is not known whether the Burnside conjecture is true or false.

We first show that if B(n, r) is infinite then it is not ¥,-categorical. This is
a consequence of the following theorem.

Turorem 16. Let G be N-categorical. Then every finitely generated
subgroup of G is finite. Moreover for each k there is an | such that every subgroup
of G generated by k elements has at most | elements.

Proof. Assume that {a , a, ,..., @} generate an infinite subset of G. Let
Wy , Wy , Wy ,... be words in {a; , a, ,..., a3} which represent different elements
in the group generated by {a; , a5 ,..., az}. For each 7 let 1, result from =,
by replacing each occurrence of a, in @; by v, , for 1 < h < k. Let ¢! be
Vpy = 1; and let d; be (a;, ay ..., az, w;». Then d; has property ¢* if and
only if i = j. Hence G is not N,-categorical. Hence if G is ¥,-categorical,
every finitely generated subgroup of G is finite.

Suppose that there is a sequence dy , d; , dy ,... of elements of G* and an
increasing sequence ng , 1y , ly ... of natural numbers such that for each j
the % elements in d; generate an n;-¢lement subgroup of G. Let w?, wy,..., wﬁbl
be words in {a, ay,..., &’} (where d; = {a/, ay,..., a;’)) which represent
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the different words in the subgroup of G generated by {a,, a,..., a;} and
define 7, t,..., .f.fl, as in the preceding paragraph. For each 7 let ¢ be
M<a<nen, (t' # 1) A (Vo)(Vicasa, (v = 2,9). Then d; has property ¢
if and only if / —j, so that G is not R,-categorical, contrary to the
hypothesis. ||

We thus need concern ourselves only with those # for which the Burnside
conjecture is true. We define B(n, ®,) to be the Burnside group on R, genera-
tors and ask whether B(n, X;) is Xj-categorical if the Burnside conjecture
is true for #, In the case where n = 2, the Burnside groups B(n, ») are all
Abelian, so that B(2, &,) is the direct sum of two-element groups which by
Theorem 2 is R-categorical,

The case for # > 2 is somewhat different. We shall treat here the case
where 7 is an odd prime. We wish to acknowledge at this point the suggestions
and assistance given by Dr. Michael O’Nan and Dr. Richard Larson.

THEOREM 17. B(3, Ry) is not Ry-categorical.

Proof. Let G = B(3, R,) be generated by {x; | i € N} and for each j let
d;be (wy , %,)(% , 2%,) *** (%g5_y , %), Where (%, ¥) is the commutator of & and .
We shall show that the d;’s are pairwise automorphically inequivalent, so that
G cannot be Ry-categorical.

Assume then that ¢ < j and that ¢ is an automorphism of G such that
o(d;) = d; . But o(d;) = (0(xy), o(xa))(0(%3), o)) ** (0(gs_y), 0(%y)) s0 that
d; is expressed as a product of fewer than j commutators. It suffices to show
that this cannot happen. We shall show that, even modulo G, d; cannot be
expressed as a product of fewer than § commutators.

Assume then that d; = (w;, w,)(w; , w,) -+ (Wys_y , wy;) modulo G”. We
may assume that each w, is a word in x, , %, ,..., #,; for otherwise we can
pass homomorphically to the group generated by «, ,..., %, and get an
expression for d; in which only #, ,..., &,; occurs.

Since we are working modulo G” we can assume that the w’s are taken
modulo G, i.e., we can write

(t)

Wap g = & oY for 1<t
and
() (1)
8 8
Wy = Xl o for 1<t <<

Since modulo G (xy, 2) = (, 2)(¥, 2) and (, y2) = (%, ¥)(x, 2) and since
(%, ¥) = (¥, ®) L it follows that

(wap—1 Wyy) = H (% xb)“';“ﬁlg“—ﬂt;,“ﬁ.(;” ‘
a<b
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Now since each element of G’/G” can be expressed uniquely in the form
I (%a , %)% (see Hall [6, p. 323]) it follows that the system of j(2j — 1)
equations below in (2])(21) unknowns can be solved (modulo 3) for
P, B0 11 <t <41 <a<2)

if @)b=a+1=2)
otherwise

%
( ( 1
Ea: Y, (8 — a8 — |
=1 0
Let V; be the vector space over Z; with basis ©v;, v,,..., vy . Let

2
= 0 oy,  for each ¢, 1<t i

a=1

and let w® = Y2 18P, for each 2, 1 < t < 4.
Then

(,v(t) ® w(t)) . (,w(t) ® U<t)) _ Z (a‘(lt)lg(t) B(t) (t))(va ® )
a,b
so that

zf: (2% ® w®) — (2 ® )]

- Z i (t)ﬁ(t) (t) (t))(,v ® 'vb)
= Z cab('va ® 'Ub)'
ab

Butif ¢ < b then
if @)b=a+1=2)

cxp =i .
= 20 otherwise,

and if @ > b then ¢, = —¢,,, Whereas for @ = b, ¢g, = 0 (all of course
modulo 3). Hence

2 [0 ® wt?) — (' @ o®)] = XJ: [(v2t1 ® v30) — (V2 @ v30)]-
t=1 t=1

Butin V; ® V; the second element has rank 2; (since the 2; tensors are linearly
independent in V; ® V;) and so cannot be expressed as a sum of 27 < 2f
elements since that must have rank <{2i. This is a contradiction, and the
theorem is proven. ||
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It should be noted that the only information used about the group G is
that the factor groups be vector spaces (which happens if we replace 3 by an
arbitrary prime p) and that G'/G”" be freely generated by {(x; , ;) | ¢ < j}.
But if a product of these commutators is 1, we can, by choosing a suitable
homomorphism, show that each of these commutators is 1. Hence to show that
G'|G”" is freely generated by {(x;, x;) | i <j} it suffices to show that in the
group B(p, 2) the commutator (x, , &,) 7 1, i.e., that B(p, 2) is not Abelian.

But each element of B(p, 2) can be written in the form agxg(x; , x,)
where z € B(p, 2)”, so it is sufficient to know that B(p, 2)/B(p, 2)" has p?
elements. But this latter group can be considered as the semidirect product of
H={x} and K = {x,,(x,,%,)} (subject to the relations a7'w,x, —
g%, , %)% and wy(x; , %)%, = (% , %)) which certainly has more than p?
and hence at least p® elements (see Hall {6, p. 88]). Thus we have proved the
following.

TuEOREM 18, B(p, ¥,) is not Ry-categorical for any odd prime p.

7. FURTHER REMARKS

In the five sections above we have considered various classes of groups
which could contain ®,-categorical groups. This investigation is of course a
prerequisite to presenting an algebraic characterization of Xg-categorical
groups. We expect to present further information about this class of groups in
subsequent publications.

The reader should observe that for each group shown not to be Ng-cate-
gorical, there must be a countable group, not isomorphic to it, which is
indistinguishable from it in terms of first-order properties. We have not
exhibited these groups, and the reader may find it instructive to find them and
compare them with the original groups.

The reader who is interested in further study of Ry-categorical structures
can refer to [1, 14, 18, and 5].
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