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firgt-order language.
in this language which
egorical,

Tet M be an interpretation of a particular
The theory of M, T(M), is the seb of all statements
are true in M. We say that M is 8, - oategorical if T (M) is R, -cab
i.e., every countable model of T'(M) is igomorphic to M.

Engeler [1], Ryll-Nardzewski [4], and Svenonius [b] gave a char-
acterization of - categorical theories by taking a close look at certain
Boolean algebras associated with a theory 7. More specifically, it 1 is
o theory we define (1) to be the seti of well-formed formulas whose
free variables are among &y, ..., n. In Fn(T) we introduce an equivalence
relation by defining ¢~y if Fp (#1) .. (@n) (@ = ). The equivalence classes
then form a Boolean algebra with respect to the connectives A, V, ~; this ;
Boolean algebra is denoted by Bn(T). The theorem referred to above
states that T is ,-categorical iff B,(T) is finite for each n. :

In this note we shall improve this result in the case that T' i8 &
extension of the theory of linear orderings, and at the same time give
a characterization of those countable linear orderings which are 8o-cat-
egorical. More specifically, we define, similarly to Erdos and Hajnal [2]
or Liuchli and Leonard [3], a seb M of countable linear order types for
which the following theorem holds:

TaROREM. The following are equivalent:

(i) [M] e,
(il) M 18 N, - categorical,

(iii) BT (M)) is fimite.

Let M be a linear ordering; we will also use M to mean the underlying
set of M. The order relation on M will be denoted by < (since there will
be no danger of confusion.) A subseb M, of M is called a segment it from
aeM,, be My, and a <c¢< b it follows that ¢e M,. An ordered seb N
is a splitting of M if N is a set of segments of M which partitions M and
it M, <y M, iff @ <b whenever a ¢ M, and be M,. The clements of N

are called the parts of M (relative to N.) If N and N! are splittings of M,
then N is called a refinement of N' il every part of M relative to N1 i
contained in some part of M relative to N.
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Let F be a finite non-empty set of order types. Suppose that there
is a splitting of M of type » (the rationals) such that each part of the
splitting has its order type in I and such that between any two parts
there are pails having each of the order types in F. In this case we note
that the order type of M is determined by the set F'; it is denoted by oF
(o for ‘“shuffle”).

Let A be the smallest set of linear order types containing 1 and
closed under + and ¢. The theorem stated above refers to this set.

Proof of the Theorem.

(i) = (ii). We show by induction on the construction of A that
if [M]e M then M is R,-categorical.

I. [M]= 1. Since M is finite, it i3 n,-categorical.

I1. [M] = [M,]+[M,] where M, and M, are N,-categorical by in-
duction hypothesis. Extend the language of linear orderings by adding
two one-place relation symbols R, and R,. Let T™ consist of the following
statements of this language:

1) T(M),
(2) (@) (Ry(@) v Ry()),

(3) (@) TI(Ru(w) A Ro@))}

(4) (@) (@)(Ry@)ARSy) = o < y),
(5) {¢™ | ¢ e T (M)},

(6) 1¢™ | ¢ T(M,)},

where, as usual, ¢¥ is ¢ with all quantifiers relativized to R. Then T* is
clearly consistent and x,-categorical. Hence B,(T™*) is finite for each =.
We want to conclude that B,,(T(M)) is finite for each n». But if ¢,
p e Fo(T(M)) and Fre (#y)...(%)(p =) then, since T(M) is complete,
we must have Fragy (#)...(%s) (@ = ). It follows that Bn(T(M )) is finite
for each m.

III. [M] = oF where F = {{M,],[M,],...,[Mx]} consists of order
types of &,-categorical linear orderings M,, M,, ..., M;. Extend the
language of linear orderings by adding % one-place relation symbols
Ry, Ry, ..., Ry. Let T* consist of the following statements of this language:

1) T(M),
(2) (@) (Bi(@)VRy@) V...V Rx(@))

® @7 _V _, B@rR@)],
@) @@[r<yrB)r<z<ya V. AR@A T1(Bi(w) A Bi(y))}) - =

>. A (B <z<yrRi()],

1<i<sk
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) U |@(Riw) = ¢%)| ¢ e T(My)},

1<i<k
where it is understood that the variable x does not occur in ¢ and ¢
is the relativization of ¢ to cx(y):
[m <yn. A (Ri(m) =>@)(e<e<y = R;(z)))]v
1<i<k

Vozezun A (Blo) > @@=e>y = R))].

1<i<

Then T* is clearly consistent and §,-categorical. Hence B,(T*) is
finite for all n. As we saw above this implies that Bn(T (M )) is finite for
all n.

(ii) = (iii). This follows from the theorem quoted earlier.

(iii) = (i). Let M be a linear ordering for which B2(T (M), and
hence BI(T(M )), ig finite. We shall, intuitively speaking, define a sequence
of splittings of A, each a refinement of the previous one, such that each
part of each splitting has its order type in ¢ and such that the final
splitting will be of order type 1. From this we deduce that [M] e .

More precisely, we define for each n a wif Ou(z, y), which is satisfied
by a pair a < b of elements of M iff they are in the same part of the nth
splitting, and a set X" of wifs with one free variable (such that each
element of M satisfies exactly one element of X") which encode the splitting
history of elements of M.

Stage 0: ¢'x): v = o,

= {p}, ¥Y°'=0, 06=0; X=vP'U6,
Oz, y): 2=y.

Stage m+1: Let X" = {X*, X3, ..., X;'}. For each finite sequence

t = (s by oeey te)y 8 = 2, of elements of {1, 2, ..., 7} define a wif g (2) by:

ol (@): (Be) (Bay) .. (Bas)[( A @ <@u) AV o=a)A( A Xi@)r
1<i<8 198 1SS

Ao <y <o =V (Onla, )V Only, #))A(T YV Oml@s, @ira)) A

1<i<8

A (z)(z < @ A 1C0m(2, ). = . (Bw)(z < w < @, A 710z, w)A ~1 Cm(w), wl)))/\
A @) (s < 2 A 71 Onl@s, 2). = (Bw) (@ < w < 2 7] Om(@s, w)A 7 Om(w, 2))] -
For each subset {t;, by, ..., ts} of {1,2, ..., 7} define a wif ¢{"*'(2) by:
vi (o) By By <o <A@y <w<z=> V Ziw)h

Ao @)y <o< d<zh10n(c,d). =.
A (Ev){e < v < dA 10m(e, v)A 71 Cnm(o, d)/\XZ'(v)))] .

1<i<s
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Let

m+1

O™ = {¢i"*(2)| for some ae M, M= (a)},
P L ()| for some a € M, M=y (a)}

Note that these sets are finite.
For each j, 1 <j<r, define a wit 67" (x) by
0 @) Xp@A (T V. e@)A(TT V. w(@).
pe@m+l pewml
Let
O™ = {07} (x)| for some a e M, M =67 (a)}
and let

Xm+1 _ ¢m+1 - g/m+1 < @m+1;

then X™' is a finite set of wifs.
Finally define Cpia(2,y) to be

pyn V @l<e<y > o)

‘I’Exm+1
Bach of the following is then easy to verify:

(i) Bvery element of M satisfies exactly one wff of X™.

(ii) 87 = {b| Cn(a,b)VOn(b, @)} is a segment of M for each a.

(iti) Cm = {8 @ € M} is a splitting of M which refines Cm—r (m > 0).
(iv) For each a e M, [83'] € Jb.

(v) If a, and a, satisfy the same element of X" then So =~ S

Now since B,(T'(M))is finite, there must be an N such that for n > N,
M |: B (Em) (Ey)(On(w7 y)/\ Bl Cn+1(w7 ?/)) .

Consider Cu; suppose that Sy < SY and that for no be M we have
8Y < 8Y¥ < 85, Let 8 be a maximal discrete segment of Cu; certainly S
cannot be infinite, for otherwise the following infinite set of wifs are
pairwise inequivalent in By(7T (M)): .

(0= 2) (Bay)(Bay)...(Bo) o= <@ < ... <@=yA N T108{@:;, Ter1)A

1<<i<

/\(w)((w <w<LY > AV (O’N(wi, w)A On(w, wm)))] 5

1<t

On the other hand if § is finite then at the next stage they will be combined.
Hence we conclude that Cy has dense order type.
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To complete the proof we need only show that the order type of Cn
is 1, because together with (iv) this implies that [M]e Ab.. But by (v)
the splitting Cx has only finitely many distinct parts; hence, if Cy is not
of order type 1, the lemma below gives a segment of Cy which would
be combined into one part of Cy+1. This is impossible by assumption.

LeMMA. If an interval I of the rational line is partitioned into k sets
R,, Ry, ..., R, then there is « subinterval I* C I and a subset {i1, iz, ..., is}
of {1,2, ..., k} such that if (x, y) C I* then for each j, 1 <j <, (z,9) N
~ Rij = @,

Proof. By induetion on k. There is nothing to prove for k= 1. So
assume it is true for &£—1. Let 4, be such that for some (¢, ) C I, (a,b)
~ R;, = @; if none such exist then I and {1,2, ..., k} satisfy the con-
clusion of the lemma. But now (a, b) is partitioned into L--1 sets so the
induction hypothesis proves the result.

Note added in proof: H. Lauchli has shown independently that, for a linear

ordering M, [M]eM if and only if J (M) is w,-categorical and finitely axiomatizable.
By the proof above, for a linear ordering, finite axiomatizability follows from w,-ca-

tegority.
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