80-categoricity of linear orderings

by

Joseph G. Rosenstein (Minneapolis, Minn.)

Let M be an interpretation of a particular first-order language. The theory of M, T(M), is the set of all statements in this language which are true in M. We say that M is κ_0 -categorical if T(M) is κ_0 -categorical,

i.e., every countable model of T(M) is isomorphic to M.

Engeler [1], Ryll-Nardzewski [4], and Svenonius [5] gave a characterization of \aleph_0 -categorical theories by taking a close look at certain Boolean algebras associated with a theory T. More specifically, if T is a theory we define $F_n(T)$ to be the set of well-formed formulas whose free variables are among x_1, \ldots, x_n . In $F_n(T)$ we introduce an equivalence relation by defining $\varphi \sim \psi$ if $\vdash_T (x_1) \ldots (x_n) (\varphi \equiv \psi)$. The equivalence classes then form a Boolean algebra with respect to the connectives \land , \lor , \lnot ; this Boolean algebra is denoted by $B_n(T)$. The theorem referred to above states that T is \aleph_0 -categorical iff $B_n(T)$ is finite for each n.

In this note we shall improve this result in the case that T is an extension of the theory of linear orderings, and at the same time give a characterization of those countable linear orderings which are κ_0 -categorical. More specifically, we define, similarly to Erdös and Hajnal [2] or Läuchli and Leonard [3], a set \mathcal{M} of countable linear order types for

which the following theorem holds:

THEOREM. The following are equivalent:

- (i) [M] ∈ M,
- (ii) M is s_0 -categorical,
- (iii) $B_2(T(M))$ is finite.

Let M be a linear ordering; we will also use M to mean the underlying set of M. The order relation on M will be denoted by < (since there will be no danger of confusion.) A subset M_1 of M is called a segment if from $a \in M_1$, $b \in M_1$, and a < c < b it follows that $c \in M_1$. An ordered set N is a splitting of M if N is a set of segments of M which partitions M and if $M_1 <_N M_2$ iff a < b whenever $a \in M_1$ and $b \in M_2$. The elements of N are called the parts of M (relative to N.) If N and N^1 are splittings of M, then N is called a refinement of N^1 if every part of M relative to N^1 is contained in some part of M relative to N.

Let F be a finite non-empty set of order types. Suppose that there is a splitting of M of type η (the rationals) such that each part of the splitting has its order type in F and such that between any two parts there are parts having each of the order types in F. In this case we note that the order type of M is determined by the set F; it is denoted by σF (σ for "shuffle").

Let \mathcal{M} be the smallest set of linear order types containing 1 and closed under + and σ . The theorem stated above refers to this set.

Proof of the Theorem.

- (i) \Rightarrow (ii). We show by induction on the construction of \mathcal{M} that if $[M] \in \mathcal{M}$ then M is \aleph_0 -categorical.
 - I. [M] = 1. Since M is finite, it is \aleph_0 -categorical.
- II. $[M] = [M_1] + [M_2]$ where M_1 and M_2 are \aleph_0 -categorical by induction hypothesis. Extend the language of linear orderings by adding two one-place relation symbols R_1 and R_2 . Let T^* consist of the following statements of this language:
 - (1) T(M),
 - (2) $(x)(R_1(x) \vee R_2(x)),$
 - $(3) \quad (x) \big\{ \neg \big(R_1(x) \wedge R_2(x) \big) \big\},\,$
 - $(4) \quad (x)(y)(R_1(x) \wedge R_2(y) \Rightarrow x < y),$
 - $(5) \quad \{\varphi^{R_1} \mid \varphi \in T(M_1)\},\$
 - (6) $\{\varphi^{R_2} \mid \varphi \in T(M_2)\},\$

where, as usual, φ^R is φ with all quantifiers relativized to R. Then T^* is clearly consistent and \aleph_0 -categorical. Hence $B_n(T^*)$ is finite for each n. We want to conclude that $B_n(T(M))$ is finite for each n. But if φ , $\psi \in F_n(T(M))$ and $\vdash_{T^*} (x_1)...(x_n)(\varphi \equiv \psi)$ then, since T(M) is complete, we must have $\vdash_{T(M)} (x_1)...(x_n)(\varphi \equiv \psi)$. It follows that $B_n(T(M))$ is finite for each n.

III. $[M] = \sigma F$ where $F = \{[M_1], [M_2], ..., [M_k]\}$ consists of order types of \aleph_0 -categorical linear orderings $M_1, M_2, ..., M_k$. Extend the language of linear orderings by adding k one-place relation symbols $R_1, R_2, ..., R_k$. Let T^* consist of the following statements of this language:

- (1) T(M),
- $(2) \quad (x) \left(R_1(x) \vee R_2(x) \vee \ldots \vee R_k(x) \right),$
- $(3) \quad (x) \big\{ \neg \big(\bigvee_{1 \leq i < j \leq k} R_i(x) \wedge R_j(x) \big) \big\} ,$

$$(4) \quad (x)(y) \Big[x < y \land (\mathbf{E}z) \Big(x < z < y \land \bigvee_{1 \le i \le k} \Big\{ R_i(z) \land \neg \big(R_i(x) \land R_i(y) \big) \Big\} \Big). \Rightarrow$$

$$\Rightarrow \cdot \bigwedge_{1 \le i \le k} (\mathbf{E}z) \big(x < z < y \land R_i(z) \big) \Big],$$

(5)
$$\bigcup_{1 \leq i \leq k} \left\{ (x) \left(R_i(x) \Rightarrow \varphi^{c_x} \right) \middle| \varphi \in T(M_i) \right\},$$

where it is understood that the variable x does not occur in φ and φ^{c_x} is the relativization of φ to $c_x(y)$:

$$\left[x \leqslant y \land \bigwedge_{1 \leqslant i \leqslant k} \left(R_i(x) \Rightarrow (z) \left(x \leqslant z \leqslant y \Rightarrow R_i(z)\right)\right)\right] \lor
\lor \left[x \geqslant z \geqslant y \land \bigwedge_{1 \leqslant i \leqslant k} \left(R_i(x) \Rightarrow (z) \left(x \geqslant z \geqslant y \Rightarrow R_i(z)\right)\right)\right].$$

Then T^* is clearly consistent and κ_0 -categorical. Hence $B_n(T^*)$ is finite for all n. As we saw above this implies that $B_n(T(M))$ is finite for all n.

- (ii) > (iii). This follows from the theorem quoted earlier.
- (iii) \Rightarrow (i). Let M be a linear ordering for which $B_2(T(M))$, and hence $B_1(T(M))$, is finite. We shall, intuitively speaking, define a sequence of splittings of \mathcal{M} , each a refinement of the previous one, such that each part of each splitting has its order type in \mathcal{M} and such that the final splitting will be of order type 1. From this we deduce that $[M] \in \mathcal{M}$.

More precisely, we define for each n a wff $C_n(x, y)$, which is satisfied by a pair $a \leq b$ of elements of M iff they are in the same part of the nth splitting, and a set X^n of wffs with one free variable (such that each element of M satisfies exactly one element of X^n) which encode the splitting history of elements of M.

Stage 0:
$$\varphi^0(x)$$
: $x=x$, $\varPhi^0=\{\varphi^0\}$, $\varPsi^0=\varnothing$, $\varTheta^0=\varnothing$; $X^0=\varPhi^0\cup\varPsi^0\cup\varTheta^0$, $C_0(x,y)$: $x=y$.

Stage m+1: Let $X^m=\{X_1^m,X_2^m,...,X_r^m\}$. For each finite sequence $t=\langle t_1,t_2,...,t_s\rangle$, $s\geqslant 2$, of elements of $\{1,2,...,r\}$ define a wff $\varphi_t^{m+1}(x)$ by:

$$\varphi_{t}^{m+1}(x) \colon (\mathbf{E}x_{1})(\mathbf{E}x_{2}) \dots (\mathbf{E}x_{s}) \Big[\Big(\bigwedge_{1 \leqslant i \leqslant s} x_{i} < x_{i+1} \Big) \wedge \Big(\bigvee_{1 \leqslant i \leqslant s} x = x_{i} \Big) \wedge \Big(\bigwedge_{1 \leqslant i \leqslant s} X_{t_{1}}^{m}(x_{i}) \Big) \wedge \Big((\mathbf{E}x_{1}) \wedge (\mathbf{E}x_{2}) \wedge (\mathbf{E}x_{2}) \Big((\mathbf{E}x_{1}, \mathbf{E}x_{2}) \wedge (\mathbf{E}x_{2}) \wedge (\mathbf{E}x_{2}) \Big) \Big) \wedge \Big((\mathbf{E}x_{2}) \wedge (\mathbf{E}x_{2}) \wedge (\mathbf{E}x_{2}) \wedge (\mathbf{E}x_{2}) \Big((\mathbf{E}x_{2}) \wedge ($$

For each subset $\{t_1, t_2, ..., t_8\}$ of $\{1, 2, ..., r\}$ define a wff $\psi_t^{m+1}(x)$ by:

$$\begin{array}{l} \psi_t^{m+1}(x) \colon \left(\to y \right) (\to z) \Big[(y < x < z) \land (w) \big(y < w < z \Rightarrow \bigvee_{1 \leqslant i \leqslant s} X_{tt}^m(w) \big) \land \\ \\ \land (c) (d) \big(y \leqslant c < d \leqslant z \land \lnot C_m(c, d) . \Rightarrow . \\ \\ \bigwedge_{1 \leqslant i \leqslant s} \left(\to v \right) \big(c < v < d \land \lnot C_m(c, v) \land \lnot C_m(v, d) \land X_{tt}^m(v) \big) \Big) \Big] . \end{array}$$

Let

$$egin{aligned} arPhi^{m+1} &= \{arphi_t^{m+1}(x)| \ \ ext{for some} \ \ a \in M \,, \ M \models arphi_t^{m+1}(a) \} \,, \end{aligned}$$
 $egin{aligned} arPhi^{m+1} &= \{arphi_t^{m+1}(x)| \ \ ext{for some} \ \ a \in M \,, \ M \models arphi_t^{m+1}(a) \} \,. \end{aligned}$

Note that these sets are finite.

For each j, $1 \leqslant j \leqslant r$, define a wff $\theta_j^{m+1}(x)$ by

$$\theta_{j}^{m+1}(x) \colon \ X_{j}^{n}(x) \wedge \left(\ \bigcap \bigvee_{\varphi \in \varphi^{m+1}} \varphi \left(x \right) \right) \wedge \left(\ \bigcap \bigvee_{\psi \in \Psi^{m+1}} \psi \left(x \right) \right) \ .$$

Let

$$\Theta^{m+1} = \{\theta_j^{m+1}(x) | \text{ for some } a \in M, M \models \theta_j^{m+1}(a) \}$$

and let

$$X^{m+1} = \Phi^{m+1} \cup \Psi^{m+1} \cup \Theta^{m+1};$$

then X^{m+1} is a finite set of wffs.

Finally define $C_{m+1}(x, y)$ to be

$$x\geqslant y\wedge\bigvee_{\varphi\in\chi^{m+1}}(z)\left(x\leqslant z\leqslant y\ \Rightarrow \varphi(z)\right)$$
 .

Each of the following is then easy to verify:

- (i) Every element of M satisfies exactly one wff of X^m .
- (ii) $S_a^m = \{b | C_m(a, b) \lor C_m(b, a)\}$ is a segment of M for each a.
- (iii) $\mathbb{C}_m = \{S_a^m | a \in M\}$ is a splitting of M which refines \mathbb{C}_{m-1} (m > 0).
- (iv) For each $a \in M$, $[S_a^m] \in \mathcal{M}$.
- (v) If a_1 and a_2 satisfy the same element of X^m then $S_{a_1}^m \simeq S_{a_2}^m$.

Now since $B_2(T(M))$ is finite, there must be an N such that for $n \geqslant N$,

$$M \models \neg (\mathbf{E}x)(\mathbf{E}y)(C_n(x,y) \wedge \neg C_{n+1}(x,y)).$$

Consider \mathbb{C}_N ; suppose that $S_{a_1}^N < S_{a_2}^N$ and that for no $b \in M$ we have $S_{a_1}^N < S_b^N < S_{a_2}^N$. Let S be a maximal discrete segment of \mathbb{C}_N ; certainly S cannot be infinite, for otherwise the following infinite set of wffs are pairwise inequivalent in $B_2(T(M))$:

$$(v \geqslant 2) \ (\mathbf{E}x_1)(\mathbf{E}x_2)...(\mathbf{E}x_v) \Big[x = x_1 < x_2 < ... < x_v = y \land \bigwedge_{1 \leqslant i < v} \neg C_N(x_i, x_{i+1}) \land \\ \land (w) \Big((x \leqslant w \leqslant y \Rightarrow \bigvee_{1 \leqslant i \leqslant v} \big(C_N(x_i, w) \land C_N(w, x_i) \big) \Big) \Big].$$

On the other hand if S is finite then at the next stage they will be combined. Hence we conclude that \mathbb{C}_N has dense order type.

To complete the proof we need only show that the order type of \mathbb{C}_N is 1, because together with (iv) this implies that $[M] \in \mathcal{M}$. But by (v) the splitting \mathbb{C}_N has only finitely many distinct parts; hence, if \mathbb{C}_N is not of order type 1, the lemma below gives a segment of \mathbb{C}_N which would be combined into one part of \mathbb{C}_{N+1} . This is impossible by assumption.

LEMMA. If an interval I of the rational line is partitioned into k sets R_1, R_2, \ldots, R_k , then there is a subinterval $I^* \subseteq I$ and a subset $\{i_1, i_2, \ldots, i_s\}$ of $\{1,2,...,k\}$ such that if $(x,y)\subseteq I^*$ then for each $j,\ 1\leqslant j\leqslant s,\ (x,y)\cap$

Proof. By induction on k. There is nothing to prove for k=1. So assume it is true for k-1. Let i_0 be such that for some $(a,b)\subseteq I$, $(a,b)\cap$ $\cap R_{i_0} = \emptyset$; if none such exist then I and $\{1, 2, ..., k\}$ satisfy the conclusion of the lemma. But now (a, b) is partitioned into k-1 sets so the induction hypothesis proves the result.

Note added in proof: H. Lauchli has shown independently that, for a linear ordering M, $[M] \in \mathfrak{M}$ if and only if J(M) is \aleph_0 -categorical and finitely axiomatizable. By the proof above, for a linear ordering, finite axiomatizability follows from κ_0 -categority.

References

[1] E. Engeler, A characterization of theories with isomorphic denumerable models, Amer. Math. Soc. Notices, 6 (1959), p. 161.

[2] P. Erdös and A. Hajnal, On a classification of denumerable order types and

an application to the partition calculus, Fund. Math. 51 (1962), pp. 116-129. [3] H. Läuchli and J. Leonard, On the elementary theory of linear order, ibid.

59 (1966), pp. 109-116. [4] C. Ryll-Nardzewski, On the categoricity in power & \$80, Bull. Acad. Polon.

Sci. Sér. Sci. Math. Astro. Phys. 7 (1959), pp. 545-548.

[5] L. Svenonius, No-categoricity in first-order predicate calculus, Theoria (Lund) 25 (1959), pp. 82-94.

Reçu par la Rédaction le 13. 2. 1967