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0. INTRODUCTION

In this paper we give a complete classification of the compléte R,-categorical
theories of rings with 1 and without nonzero nilpotent elements.

It is not feasible to state the main result at the outset, so we simply give
a sketch of our analysis.

First we show that if R is any ring with Th(R) R,-categorical then the
additive group of R has bounded order, and there exists a monic f in Z[x]
which vanishes identically on R. Both results are consequences of Ryll-
Nardzewski’s theorem [19].

Next, we reduce the general case to the case of R whose additive group
is a p-group for some prime p. "The main tool here is Grzegorczyk’s theorem
[7, 22] on products of ®,-categorical theories.

Next, we suppose R has no nonzero nilpotent elements. Then R has
characteristic p, so is an algebra over the field F,, of p elements. But R

* The main theorems of this paper were proved independently by the two authors.
This article is based on Macintyre’s 19721973 draft. Rosenstein’s 1971 draft also
contained a proof that the categories of countable subrings of TLier I (p) and Tlies Fy(q™)
are equivalent whenever the lattices of divisors of m and » are isomorphic (where
Ft) s the field with ¢ elements); this generalizes a theorem of R. W. Stringall ('T"he
categories of p-rings are equivalent, Proc. Amer. Math. Soc. 29 (1971), pp. 229-235).

t Partially supported by NSF Grant GP-28348.

129

Copyright © 1976 by Academic Press, Inc.
All rights of reproduction in any form reserved,



130 MACINTYRE AND ROSENSTEIN

satisfies the polynomial identity f = 0 described above, so by a theorem
of McCoy [14] R is commutative.

So by now we are considering commutative algebras R over F, , satisfying
a polynomial identity f =0, with a unit and without nonzero nilpotént
elements. Arens and Kaplansky [1] gave an important structure theorem
for countable R satisfying these conditions. Their theorem is a generalization
of Stone’s theorem [8]. To R they associate a Boolean space X, a finite
sequence X, i << 2, of closed subspaces of X, a finite field F, and a sequence
By, & << m, of subfields of I, They give I the discrete topology, and consider
CX,F; X, i < my F; i < n), the ring of continuous functions g X—>F
such that g(X;) CF, for i < n. Then

RgC(X,F;Xi,i<n;Fi,i<n). (%)

The problem is to find out what the Ro-categoricity of Th(R) tells us
about X and X;, { < n. The key idea is to use Stone duality. Let B be the
dual algebra of X. Then X, 1 <n, correspond to ideals I,, { < n, of B.
So to R we have associated a relational system .2/(R) consisting of the Boolean
algebra B with distinguished ideals I;, i < n We show how to to interpret
#(R) in R, and conclude that if Th(R) is x,-categorical then Th(2/(R))
is N,-categorical. '

Then we prove a general theorem, which can be construed as a relative
of a theorem of Waskiewicz and Weglorz [22], which enables us to conclude
that, for 'R satisfying (), if Th(+/(R)) is R,-categorical then Th(R) is x,-
categorical, So we have reduced our problem to one about Ro-categoricity
of systems consisting of a Boolean algebra and a finite sequence of dis-
tinguished ideals. F inally we solve this problem about Boolean algebras.

Other articles in the literature dealing with Ro-categoricity are 2, 6, 12,
17, 18, 22].

1. MODEL-THEORETIC PRELIMINARIES

1.1, We assume familiarity with the basic material of model theory
up to the Ryll-Nardzewski theorem [19]. A good reference is [20].

We will begin by listing some known general results about Ro-categoricity,
and then add one new result to the list.

Throughout, L will be a countable first-order language and T will be an
L-theory. Usually T will be complete, and then S,(7) will be the space
of complete n-types over T.

It is convenient to make the definition that an L-structure 4 is No-
categorical if Th(.#) is ,-categorical. Note that any finite 4 is X,-categorical.
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1.2. The fundamental theorem is

THEOREM 1 (Ryll-Nardzewski [19]). Suppose T is complete. Then T is
R,-categorical if and only if Sp(T)1s finite for each n.

In algebraic investigations the following is very useful.

Tugorem 2 (Grzegoreyck [7, 22]). Suppose My and M , are Ko-categorical.
Then My X My 1S Ro-categorical.

1.3. Grzegorcyzk’s theorem should be thought of as a preservation
theorem. Another important preservation theorem in this direction was

found by Waskiewicz and Weglorz [22].

Suppose X is a topological space, and  an L-structure. Give M the
discrete topology, and consider the set of continuous functions f: X — .
It is easily seen that this set forms a substructure of the L-structure ME
In this way we get an L-structure C(X, A).

For general X, little is known about the model theory of C(X, #). When
X is Boolean, however, the situation is much better understood [5]. When
_# is finite, and X Boolean, the structures C(X, M) are just a dual version
of the Boolean extensions [2]. '

In order to make natural the theorem of Waskiewicz and Weglorz, we
have to look at Xg-categorical theories of Boolean algebras.’

Turorem 3 (Folklore). A Boolean algebra B is X,-categorical if and
only if B has only finitely many atoms.

Proof. Sufficiency is well known.

For necessity, we apply Theorem |. For each n < w, consider the formula
&,(vy) which expresses that @, is a join of n atoms. @, and P, are incom-
patible relative to the theory of Boolean algebras, if n 7 m. So if B has
infinitely many atoms, S,(Th(B)) is infinite, and so, by Theorem 1, B is not
x,-categorical. [ |

Now we look back at C(X, M), where X is Boolean. Suppose A is Ro-
categorical. When is C(X, A) R,-categorical ? Now, with X we have associated
B(X), its dual algebra of clopen sets. Waskiewicz and Weglorz proved

THEOREM 4 (Waskiewicz and Weglorz [22]). Suppose X is Boolean,

and B(X) is X,-categorical. Suppose M is §y-categorical. Then C(X, H) is
Ro-categorical.

COROLLARY. Suppose X is Boolean, with only finitely many isolated poins.
Suppose M s N,-categorical. Then C(X, M) s N,-categorical.
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Proof. By Stone duality, B(X) has # atoms if and only if X has 7 isolated
points. Now apply Theorem 3, ]

1.4, To analyze the No-categorical theories of rings, we need a
generalization of the construction used in 1.3

Let X be Boolean, and 4 an L-structure. Let X;, i <mn, be closed subsets
of X, and M,y i < n, substructures of 4. Suppese that the map. X; > A,
is order-preserving. Then it is clear that we get 4 substructure of (X, #)
if we restrict to those Sin C(X, #) such that FX)C A, for i < n In this
way we get a structure O(X, M; Xyt <mM;,i < n).

For this type of structure we will produce an analog of Theorem 4. In
order to formulate it, we need to use Stone duality.
For each closed X, above, define

X, = {ae B(X): an X, ;0}.

Then X, is an ideal in B(X).
In this way we get a system o/(X; X,,7 < n) consisting of the Boolean
algebra B(X) and the distinguished ideals X, i<n.

THEOREM 5. Suppose X is Boolean, and X, ; < n, are closed subsets
of X. Suppose M is a finite L-structure, and M, i < n, are substructures
of M. Suppose X X, , 1 < n) is Ry-categorical. Then CX, M; X,,i < ;
M i <n)is Ro-categorical.

Proof. We shall just outline the proof. It is sufficient to show that
CX, #4; X, ,i < n, M; i < m) is interpretable in AX; X;,i < n), for
then the result is immediate from Theorem 1.

The key point is the finiteness of .#. Let % be the cardinality of .#. Let
Mo ey My be an enumeration of 4. Suppose fe C(X, #). Then to f
Wwe associate the k-tuple S Y(my),..., fYmy_)> of clopen subsets of X,
These clopen sets form a partition of X,

Conversely, let by sy by be elements of B(X) such that byU U
by =1, and b, N by =0 if i % j. Then there is a unique element f of
C(X, .#) such that f Hmy) = b, for i < k.

Thus we can interpret the elements of C(X, A) as E-tuples by gy by 1>
of elements of B(X) satisfying the conditions of the previous paragraph.

Because of the finiteness of A, it is clear that the relational and opera-
tional structure of C(X, A) is interpretable in B(X).

Finally, <4, ,..., bx_1> corresponds to an element of C(X, .# s Xl <mg
Mi,i <mn) if and only if the following condition is satisfied. If m, ¢ M;
then b, e X .
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It follows that C(X, #; X; i<y Myt < n) is interpretable in
L(X; Xi,1 < n) and the theorem is proved. |

Notes. (1) This proof is based on a remark of Dana Scott. An earlier
proof used ideas related to Comer’s [5].

(2) We do not know what the possibilities are if # is infinite.

3) '_Using Stone duality, it is clear that there is a natural correspondence
between systems consisting of a Boolean algebra B with distinguished
ideals I;, i < m, and Boolean spaces X with closed subsets X, i< m

(4) Theorem 4 raises the problem: Classify the systems (B; I;, & < n)
which are R-categorical.

This problem is discussed in Section 4. The answer is a generalization
of Theorem 2. Systems (B3 Iy 5.os I,) have been treated by Rabin in [16],
but we do not see how to get information on Ro-categoricity by this approach.

2. RiNG THEORY

7.1. We formalize ring theory in the usual language L with -+, 0.
We shall be trying to classify rings R which are R,-categorical (relative to L).

We shall make a cumulative series of assumptions about R. In a given
subsection 2.—, the lemmas will be proved relative to all assumptions made
previously.

2.2. Assumption: R is R,-categorical.
Levma 1. There exists an integer n >0 such that for all x in R, nx = 0.
A
Proof. Consider the formulas @,,(g, 1)

vy =7y + VT
Ny e

mtimes

By Theorem 1, there exists N such that

R b= (1 v, o) Prnao o N @oor 0]

<N
Thus, )
R = (Yop)[no, = 0], where 7 =N! 1
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LeMMA 2. There exists an integer N > 0 such that for each x in R either

RNHL o N
or
AN = N1
or
"
or

AL —

Proof. 'This is essentially the same idea as in Lemma 1, and we omit
the details. |

COROLLARY.  There 45 a monic J € Z[x) such that J(r) =0 for all r in R.
Proof. Let f(x) = [Tyejen (a1 — ). 1

2.3. Now we decompose R as a product of ideals. Select # >0
as in Lemma 1, and let » — I'Tl: #3* be the prime factorization of #. Let
R, ={xeR: Pi'x = 0}. Then R, is an ideal in R, and by familiar arguments
.R o~ H," 'Rl .

Lemma 3. Each R; is Ry-categorical.
Proof. Each R, is definable in R. Now apply Theorem 1. [ |

Reduction of the Problem, By Theorem 2, R will be X-categorical
provided each R, is No-categorical. So we may now confine ourselves without
loss of generality to tings R for which there is a prime power p* such that
P = 0forall xin R.

Note. R has a1 if and only if each R, has a 1.
2.4, Assumption: R has ne nonzero nilpotent elements,

LEMMA 4. (i) px = 0 Jor all x in R. (ii) For some L Jor all x in R,
(iii) R és commutative.

Progf. (i) pty =0 = (29?2 =0 > Py = 0 since there are no nonzero
idempotents.

(i) Fix x in R, and consider the subring .S generated by x. S is com-
mutative and without nilpotent elements, so semisimple. By Lemma 2, and
(i), S'is finite, so artinian. So S is a finite product of finite fields, so for some b
x? =g,

(iii) This follows from (ii) by [9, p. 73] l



N,-CATEGORICITY 135

9.5. Now we can apply a theorem of Arens and Kaplansky [1] and
get to the heart of the matter. In [1, Theorem 8.1, Corollary], they proved:

Suppose 7 is a ring of characteristic p in which every element satisfies
a" — a, and in which every ideal is countably generated. There there
exists a locally compact zero-dimensional space X, with a closed subset X
for each divisor & of n, such that ./ is isomorphic to the ring of all continuous
functions from X to Fyn, vanishing outside a compact set, and on X, taking
values in F . ,

Suppose & has 1. Then by a routine argument X must be compact and
so Boolean. '

2.6. Assumptions: R has 1. R is countable.

LemMa 5. R is of the form C(X, F; X;,i < n Fy, i <n), where X 15
Boolean, F is a finite field, the F; are subfields of F, and each X, is closed.

Proof. By Arens and Kaplansky [1]. [ |

27. Now suppose R is of the form given in Lemma 6. Fort <m,
define

Y, = {xe X: f(x) eF,;,YfeR}.

Since F is finite, each Y is closed. Clearly Xi CY,. Itis readily seen that
that R = C(X, F; Y,,i < n Fy i <mn).
So we can now assume without loss of generality that

R:C(X,F,lel<nin’1’<n’)’

where X; = {xe X: f(x)eFy, vfe R}
Define #(R) to be the system consisting of the Boolean algebra B(X)
with the distinguished ideals X, i<n

Lemma 6. #(R) is interpretable in R.

Proof. Let E(R) be the Boolean algebra of idempotents of R [9]. E(R)
is isomorphic to B(X) via the correspondence ¢ € {xe X:e(x) =1}

What does it mean for & to be in :frl(X’ PLi

Suppose b€ X,, and b # 0. For each point ¢ in b there exists fi in R
such that fi(t) ¢ F; . On some clopen b, C b, with 1 € by , f, takes only the value
fi(t). By compactness, b is covered by finitely many of the by .

Let N be the cardinality of F. There are at most N possible values for
filt). Let T be a finite subset of b such that b = User b - Let we k. Let
T, ={teT:f(t) = o}, Let B, = Ueer, b - Then it is a routine argument
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(cf. [1]) to show that there exists g, in R such that & 1s identically zero outside
B and g, takes the value « identically on B, -

We have § — User B and with each B« we have associated £+ - Note
that if 8. 5 0 then o ¢F;. Let ¢ be the cardinality of F; . Then aeF; if
and only if o7 — 4,

Suppose B, £ 0. Then « ¢F;, s0 a7 £ «. Define hy on X by

hy(x) = (a? — @)1 if xef,;

ho(x) = 0 if xep,.

Then 4, e R, Clearly h (g1 — g.) is the characteristic function X« of B, .

SUPPose () = b. Then ¢ = U, $1(8,) — (). 5. We pors e = £,

and ha(gaq - ga) = Xo
Thus we have shown:

If ee4~1(X)) then e is of the form (J,_ e, , where each e,
is an idempotent, and there exist %, , v in R such that (#)
V(1 — ) = e,.

Conversely Suppose ee F(R) and there exist e (k< N) in E(R), and
U, oy in R, so that (#) is satisfied. Suppose ¢ ed(e) and ¢ & X;. Then for
some &, £ed(e,). e, is of course the characteristic function of ¢(e,). Since
te Xy, w(t)eF, . Thus wy"() = u,(f). Since Ol — uy) = o, et) =0,
80 L €d(e,). This is a contradiction. Thus M) N X, =0, 50 ¢ ed-1(.X)).

We have shown that $YX) is first-order definable in R. The lemma
is proved. |

2.8. A direct consequence of Lemma 6 i

Lemma 7. (R is No-categorical,

Proof. Theorem 1 and Lemma 6. [ |

But conversely we have

Lemma 8, Suppose R iy of the form CX,F; X, ,i < mF i < m),
where X is Boolean, F is o finite field, and the Fy are subfields of . Let Z(R)

be the system consisting of B(X) with the distinguished ideals Xisd < n. Suppose
A(R) is Ro-categorical. Then R is 8y-categorical,

Proof. Immediate from Theorem 5.

2.9. We have now solved our main problem,
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TuporeM 6. Suppose R is a countable ring with 1 and no nonero nilpotent
clements. Then, R is Ro-categorical if and only if R is of the form Ry%,..., xR, ,
where each R, is of the form CX;, Fy i Xjivi < m s Iy, 1 < my), where
each X, is Boolean, each F; ts a finite field, and each Fj; is a subfield of Iy,
and each system (B(X)), Rk <) s K,-categorical.

Proof. Necessity. 2.3, Lemma 5, Lemma 7.
Suﬁiéi,ency. Lemma 8, Theorem 2. [

Notes. (1) We can classify the systems (B, I;,j < mn) which are Xo-
categorical (see Sect. 3).

(2) At present without Section 4, we can classify the systems (B, I,
j<mn) when n=0. This is Theorem 3. This yields examples of Ro-
categorical theories of rings, €.g. Th(C(X, F)), where X has only finitely
many isolated points, and I is a finite field.

(3) By Lwenheim-Skolem, there is no loss of generality, in classifying
x,-categorical Th(R), in assuming that R is countable.

3. R,-CATEGORICITY FOR BOOLEAN ALGEBRAS WITH DISTINGUISHED IDEALS

3.1. We are dealing with systems
M = <M,ﬁ,U,',0,1,]i,i < n,

where (M, N, U, ,0,1) 1s a Boolean algebra #,, and the J, are ideals
in . Such a system will be called an augmented Boolean algebra of rank n.

We will make fundamental use of Stone’s work [8]. To begin with, the
equivalence of Boolean rings and Boolean algebras will be needed. Thus
any Boolean algebra can be canonically converted to a Boolean ring, and
conversely [8]. The main point for us is the functoriality of the construction,
and the fact that the notions of homomorphism and ideal are independent
of whether we are in the algebra or ring setup. Note, too, that a Boolean
ring is naturally an algebra over F, . Towards the end of this section we shall
use the topological duality.

Our problem is: Classify all augmented Boolean algebras . such that
M is §,-categorical.

3.2. Limitations on M.

In. this subsection, .4 is an augmented Boolean algebra of rank n, as
above, and #, is its underlying Boolean algebra. We assume # is Ro-
categorical.
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Lemma 9. 4, has only finitely many atoms.

Proof. See proof of Theorem 3. |

Lemma 10. For each i, My| ], has only JSinitely many atoms.
Proof. #,]], is interpretable in M, . Now apply Theorem 3, |

These necessary conditions on will not be sufficient for No-categoricity,
We now find a final necessary condition, which will also give us a sufficient
condition for . to be Ny-categorical,

Recall that a Heyting algebra (or Brouwer lattice) is a structure <H, A, v,—>
such that (H, a, V) is a lattice. g A (a — b)A< b, and a —»p = V {ax:
XAa=<"blforalla bin H (see [3]).

The basic point for our purposes is that the set of ideals of a Boolean
aigebra forms a Heyting algebra. Thus, suppose I; and I, are ideals in the
Boolean algebra B. We define

Laly=InI,;

Livip=1I +1,;

I, > I, = {xeB: xly C 1}
It can easily be verified that with these operations the set of ideals of B
forms a Heyting algebra. Morcover, the Heyting algebra has a 0 and 1,
namely, the ideals () and B, respectively,

Now let H(.#) be the Heyting algebra of ideals of My, and let Hy(.#)
be the subalgebra of H(.#) generated by 0, L Ji,i<n.

Lemma 11. Hy(A#) is finite, and Jor each | in HyA), My has only
Jinitely many atoms.

Proof. Each member of Hy(#) is first-order definable in M. So if
Hy(#) were infinite, Th(#) would have infinitely many I-types, con-
tradicting Theorem 1. If Je Hy(H), #,/] is interpretable in .#, so apply
Theorem 3.

We can now state the main result.

THEOREM 7. Th(#) is Ro-categorical if and only if H\(A) is finite and
Jor each [ in Hy(A), M,] ] has only finitely many atoms.

We have proved necessity. Sufficiency will take some time.
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3.3. Extension of Isomorphisms

We now have to prove some isomorphism theorems for augmented
Boolean algebras. As always with ®,-categoricity, the problem is: Given
a monomorphism fi #y — Ay, where ., is finite, and given a finite
extension .#," of 4, , extend f to a monomorphism g: Ay — Hy .

We have to find necessary and sufficient conditions for the existence of .

3.3.1. The basic lemmas.

Lemma 12. Let B be a finite Boolean algebra, and B, a- Boolegn algebra
which is a proper extension of B. Then some atom of B is not an atom of By .

Proof. Let ay,...; Gn be the atoms of B. Then 1 =a; Y = Ua, . Let
xeB,. Then x =xN1 =@xNa)V U (xNay). If each a; is an
atom of B, , each x N a;is 0 or @;, 80 X € B. -. B = B,, contradiction. |

DerFINITION. Suppose B is a subalgebra of By, and x € B; . Let (B, x)
be the subalgebra of By generated by B and x.

Levma 13. Let By, By be finite Boolean algebras, and f: By =~ B, an
isomorphism. Let By' = (By, x>, and By = {Bg,¥> be extensions of By, By,
respectively. Suppose 0 < ¥ < &, where a is an atom of By, and 0 <y < f(a).
Then [ extends to a unique isomorphism g: B’ = By with g(&) = y.

Proof. Leta = Gy, @y sy @n be the atoms of B, . Let b; = f(a:), i < n
Then the b; are the atoms of By. Fori =1, x0a; Layna; =0, so0
x N a; = 0. Similarly y N0 b; = 0.

Let te B,. Thent =t N1l = (tNay) VY U (2N ay), SO

xNt=xNtNa
=0 if tnay=0;

== if thay=4ag-
Similarly,

ynfe)=0 if f(t) N by =05
=y if () N by = by

Now we switch to the ring formulation.

Every element of By’ is uniquely of the form By + A ¥ pBiE B,,»=0
or 1. Gimilarly for By'. We have calculated x - B; for each By € By, and since
x* — x the multiplication table of B, is uniquely determined. Similarly,
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the multiplication table for By’ is uniquely determined, and £ extends to a
unique Boolean-ring isomorphism g: B, ~ B,’ with gx) =y 1

Now we extend Lemma 13 a little, to enable us to handle isomorphisms
between augmented Boolean algebras. First we need a definition.

DEerINITION, Suppose f: B, ~ B, is an isomorphism of Boolean algebras.
Let I, be an ideal in B, , and I, an ideal in B, . Then, fis an (41, I,)-map
if f(I,) =1,. '

We shall use the notation x = 4 (mod I) to mean x — g e[,

LEvmA 14, Let By, B, be finite Boolean algebras with ideals Iy Iy
respectively. Let B,' = (B, , x), By = (By, v, be extensions of B,,B,,
respectively, with ideals I/, 1, respectively, such that I,' N B, — L, L'n
By =1, . Suppose f: By~ B, is an (I, Ly)-map. Suppose 0 < x < a, where
ais an atom of B, , and () < ¥ < f(a).

Suppose that one of the Jollowing conditions holds.

(1) xely andy ely;
@) x=a(mod I'), and y = f(a) (mod I,);
() x#h', x a(mod ), y ¢ Iy, and y = f(a) (snod 1),

Then f extends to a unique (I, 1,")-map &' B ~ B, with gx) = y.

Proof. Clearly we have only to verify that the £ given by Lemma 13
is an (1), I,")-map.

Every element of B,’ is uniquely of the form By + A - x, where B, e B,
and A; = 0 or 1. We have &By + Ay - %) =f(B) + A - y.

Assume (1). Then Bi+ Ay - ¥ = B, (mod I'),s0 B, + A, - x €1, if and
only if B, el,’. But L'NB, =1, so Br+ A sael, if and only 8, e1, .
Similarly, £(8,) + A, *y €l if and only if f(Bel,. Since f is an (I, AN
map, it follows that g is an (4y', Z,")-map, as required.

Assume (2). Then, essentially as in the proof of (1), we can show
that g is an (I, 1,)-map.

Assume (3). Suppose By +xel. Then

= —p8 (mod I,

50
¥ =B (mod Iy),

80
x=axNa=pHNa (mod I,).
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Since B, Na =aorfNa =0 wegetx=0 (mod I’), or x = a (mod I}’).
Either conclusion gives a contradiction. Thus g, + x#¢ I,". Similarly
f(B) + y ¢l Thus gisan (I, I,')-map. [

The preceding lemmas will be our main tools. We give one more lemma
of the same type, designed to show that the hypotheses of the preceding
lemmas are natural.

Lemma 15. Let B be a finite Boolean algebra with an ideal 1. Let B' be a
proper extension of B, of the form (B, y>. Let I' be an ideal of B', with
I’ "B = 1. Then there is an atom a of B, and an element x of B" such that
0 < x < aand B = (B, x>. Moreover, either

(1) xel’,or
2) x—ael',or
(3) forallbin B, x —bel'

Proof. Suppose B has n atoms. Then B has cardinality 2". Then clearly,
B’ has cardinality 27+1.

By Lemma 12, we can select an atom a of B such that a is not an atom
of B'. Select x in B’ with 0 < # < a. Then cleatly (B, #) has cardinality
27+ so B’ = (B, x).

Suppose be B, and x —bel’. Then x =xNa=>bNa (modI'). But
bNa =0 or a Therefore ¥ =0 (modI') or ¥ = a (mod I). This proves
the lemma. [

We have now assembled the apparatus for extending isomorphisms.

The problem is to get them started.

3.3.2. Frames. For the remainder of this section we restrict our attention
to augmented Boolean algebras M such that Hy(M) is finite, and for each J
in Hy(M), ] has only finitely many atomts.

For [ Hy(#), let n, be the canonical quotient map #, — #,/].
DEFINITION.  An element a of  is a J-atom if n,(a) is an atom of .4,/ ].

DEFINITION. A frame for # is a Boolean algebra B such that
(i) BCA,;

(ii) for each Je Hy(#), and each J-atom a, there is a b in B such that
a == b (mod J).

LeMMA 16. A has a finite frame.
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Proof. Since .#,/] has only finitely many atoms, for each J in Hy(.#),
we can select for each ] a finite set 57 such that each J-atom is congruent
modulo [ to an element of &, . Let B be the algebra generated by the union
of the sets &/, . Since Hy(.#) is finite, B is finitely generated, and so finite.
B is clearly a frame for 4. ||

3.3.3. Suppose 4V and .#® are augmented Boolean algebras
(BM, JM,i < n) and (B®, ], i < n), satisfying the conditions set down
at the beginning of 3.3.2.

Suppose in this subsection that MV = #®. We will deduce certain
conditions on .4 and .#®, and in due course prove that these conditions
imply that AV =_  .#®,

ConprTioN 1. There is a Heyting algebra isomorphism : Hy( AWV
Hy(A®) such that J(JM) = J®, i < n.

To see this, recall that the Heyting algebra operations A, v, and —,
are first-order definable in .#™ and .#®. Condition 1 now follows since
MY =42, |

We note also that the map i is unique, and henceforward we reserve the
notation “y”" for this particular map.

CoNDITION 2. For each | in Hy(.HY),

(a) either BV ] and B®[(]) have the same finite cardinality, or both
are infinite;
(b) BW|] and B?[Y(]) have the same number of atoms.

This is clear. |

ConpITION 3. There is a finite frame «/V of MV, and a (Boolean algebra)
isomorphism @ of o7V into B®) such that (4 V) is a frame SJor B®, and
DAV N ]) = D(AD) N ]) for each | in Hy(M).

To prove this, we first note that .#‘V has a finite frame .o/ ) by Lemma 16.
Let # ,..., x; be the elements of &/, It is an easy exercise to construct a
first-order sentence S which expresses the following:

The Heyting algebra H generated by J,, i < a, is isomorphic to H(.#)
by the correspondence = sending J; to J. There are elements 1 ,..., v,
which form a frame, such that the augmented Boolean algebra consisting
of ©g,..., v, with the ideals {v,,..,9,} N J for JeH, is isomorphic to
the augmented algebra consisting of x, ,..., ¥, , with the ideals {2y -0 2} O

w(J) for Je H.
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Then #V = S, 50 4@ =S, whence Condition 3 follows easily. ||

3.3.4. In this subsection we suppose that .#®M and g@ satisfy
Conditions 1-3. We fix a frame .V and a map P as in Condition 3, and let
A = (g W),

Note the symmetry of the situation. If we interchange .#1 and M,
&M and /™, and replace ), ® by -1, @1 respectively, then we are again
in the situation of the previous paragraph.

We wish to prove that .40 =, AP, We will show that Karp’s criterion
[11] applies.

Let X be the set of maps fsuch that

(i) fis an isomorphism of a finite subalgebra of B to a finite sub-
algebra of B,

(i) f extends @;
(iii) if y e dom(f) and Je Hy(AW), then y e | < f(y) e d()).

We claim that " satisfies the conditions of Karp’s criterion. By Condi-
tion 3, " # . Because of the symmetry of the situation, to verify that
Karp’s criteria are met, we need only prove: If fe &, and te B, there
exists ge A, with fC g and te dom(g).

So, suppose fe X, and te BV, Let DO — dom( f). If t & DV there is
nothing to prove. So suppose t¢ DV, By Lemma 15, there is an atom g
of BW, and an element x € BW with 0 <% < 4, such that KDW ¢y =
(DD, x). Also, for each ] e Hy(#), cither x Jorx—aec]orx—b¢ ]
for all be DD,

By the proof of Lemma 14, if we can find yin B® with 0 < y < f(a),
and such that, for all Je Hy( AN, xe ] = y€¢(]) and ¥ —aec J -
y—f(a)e(]), then f extends to an isomorphism g of (DW), x) into B®),
and g will be an element of ", ' .

We have at last isolated the main difficulty. In the next subsection, we
show that we have arranged matters so that this difficulty can be oversome.

3.3.5. (Notation as in 3.3.4). Let f, a, x be as above. We now prove
that there exists y in B® meeting the above requirements. '

Let X, Y, Z be, respectively, the sets of Je Hy(.#Y) such that
(D) xe],
(i) x—ae],
(i) x¢ Jand x — ag¢ J.

Neither X nor V is empty, since the ideal B belongs to them.
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TueorEM 10. The only totally atomless N,-categorical augmented Boolean
structures {B, I> are those where the Heyting algebra generated by I is isomor phic
to

D,, Dp, D,,, or D,.

req

This gives an explicit description of all totally atomless Xo-categorical
structures of form (B, I>, where I is an ideal of B.
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