Offprint from
PROCEEDINGS OF THE LONDON
MATHEMATICAL SOCIETY

Third Series. Volume XXV November 1972

EFFECTIVE MATCHMAKING (RECURSION
THEORETIC ASPECTS OF A THEOREM
OF PHILIP HALL)

By ALFRED B. MANASTER
and JOSEPH G. ROSENSTEIN

CLARENDON PRESS - OXFORD

Subscription (for four numbers) £13 post free



The Proceedings of the

LONDON MATHEMATICAL SOCIETY

Third Series

Editor-in-Chief DR A, W. INGLETON, Bailiol Coliege, Oxford OX1 3BJ
Baecutive Editor 3. W. ARCHBOLD

The Council of the Society invites papers on mathematical subjects for
publication in the Proceedings or the Journal. Authors wishing to submit
a paper should send it to the member of the Rditorial Board whose
mathematical interests are judged to be nearest to the topic of the paper.
(A list of the Editorial Board appears on the back of the cover.)

Manuscripts should be prepared in accordance with the Society’s
‘Notes for Contributors’ copies of which may be obtained from the
Secretary, Professor P. J. Higgins, King’s College, Strand, London
WOC2R 2LS.

Papers accepted for publication will be allocated to the Proceedings or
Journal at the discretion of the Society. Normally, papers of more than
about ten printed pages will appear in the Proceedings and shorter papers
in the Jowrnal. No manuscript submitted should have been previously
published and with acceptance of a manuscript the London Mathematical
Society acquires the copyright for all languages and countries including
rights of photocopying or reproduction by any other method.

Authors are advised to retain a copy of anything they submit for
publication, since neither the Society nor the Publishers cau accept
responsibility for any loss.

The Proceedings of the London Mathematical Society (Third Series) is
published at the price of £13:C0 net for a volume of four parts, £3-60 for
a single part. Two volumes are normally published in a year. Cases for
volumes can be supplied at 50p. net. Correspondence concerning sub-
scriptions should be addressed to Subscription Department, Oxford
University Press, Press Road, Neasden, London NW 10 0DD. Correspon-
dence concerning all other business and publishing matters should be
addressed to Clarendon Press, Walton Street, Oxford 0X2 6DP.



EFFECTIVE MATCHMAKING (RECURSION
THEORETIC ASPECTS OF A THEOREM OF
PHILIP HALL)

By ALFRED B. MANASTERY and
JOSEPH G. ROSENSTEIN}

[Received 4 May 1971—Revised 12 November 1971]

Given a set B of boys and a set @ of girls, we call a subset S of Bx @ a
society and we say that b knows g when <b,g> € 8. The marriage problem
for the society S is said to be solvable if it is possible to marry, in the
traditional one-to-one manner, each boy to a girl whom he knows. We
are concerned here with the computable analogues of these notions. Thus
a society is recursive if there exists an algorithm which, when presented
with a boy b and a girl g, effectively determines whether b knows g.
Similarly, the marriage problem for the society § is said to be recursively
solvable if there exists a one-to-one algorithm which, when presented with
a boy b, effectively marries him to a girl whom he knows. We first show
that, even if (the marriage problem for) a recursive society is solvable, it
need not be recursively solvable. We then consider several conditions on
solvable recursive societies; for each we determine whether such a society
must be recursively solvable and, if not, how computationally complex its
solutions need be. We also discuss some sociological variations of the
marriage problem and indicate how our results can be applied to them.
We have drawn upon ideas from two branches of mathematics—
combinatorics and recursive function theory. The combinatorial motiva-
tion has its source in a famous theorem of Philip Hall ( [4]) which implies
that if there are only a finite number of boys, then the society S is solvable
if and only if, for each natural number %, any  distinct boys know among
them at least k different girls. Using a compactness argument one can
show that this same condition is necessary and sufficient even if there are
an infinite number of boys, so long as no boy knows infinitely many girls.
(See either [5] for a combinatorial argument or [1], p. 47, for a proof based
on the propositional calculus. This generalization was first proved by
M. Hall ([3]). L. Mirsky’s new book ([10]) contains an exhaustive
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616 ALFRED B. MANASTER AND JOSEPH G. ROSENSTEIN

account of the ramifications of P. Hall’s theorem.) Recursive function
theory, on the other hand, provides the tools with which one can measure
the degree of effectiveness or computability of a function or a set whose
existence is proved by combinatorial means. An important application of
these techniques is the recent work of Jockusch ( [6]) on the combinatorial
theorem of Ramsey, which influenced the first author of the present paper.
We feel that computable versions of combinatorial results can help
contribute to our understanding and appreciation of the combinatorial
arguments; we also hope that such analyses may eventually provide a
precise way of measuring the complexity of various combinatorial results.

The paper is essentially self-contained. The reader who is not familiar
with recursive function theory and mathematical logic will find all the
information that he needs in the section below. He will also find a guide
to that section so that he can tell which concepts and terminology he
needs to understand different parts of the paper. The reader who is
familiar with recursion theory can omit this section, for standard notation
is used throughout the paper.

1. Guide. Thissection, containing background information about recursive
function theory and mathematical logic, is divided into three parts. The
first part ‘Algorithms and partial recursive functions’ contains all the
material necessary for Theorems 1-4 of §2 and Theorems 1*-4* of §3.
The second part ‘Relative recursiveness’ is needed for Theorems 5-8 of
§2 and Theorems 5*-8* of §3. The third part ‘The jump operator’ is
needed only for the remaining theorems.

Algorithms and partial recursive functions. In the opening paragraphs
above, two algorithms are mentioned. The first, when presented with a
boy b and a girl g, determines whether b knows g¢; the second, when
presented with a boy b, finds a girl whom he should marry. In this paper
the boys in a society will always be {B(:)|? € N} (where N is the set of
natural numbers) and the girls will always be {G(j)|j € N}. Thus the
first algorithm can be viewed as determining a function f: Nx N - N
such that f(z,7) = 1 if B(¢) knows ((j) and f(i,4) = 0 otherwise; similarly,
the second algorithm can be viewed as determining a function A: N — N
such that A(¢) = j means that B(¢) should marry G(j). We shall therefore
assume that each algorithm we consider determines a function g: N* - N
for some k (where V¥ is here the Cartesian product for k copies of ).

What is an algorithm ¢ Intuitively, an algorithm involves a finite set
of instructions, formulated in a finite language, which, given any
argument, generates a computation which, after a finite number of
operations, yields an answer.
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There have been many attempts to make precise this intuitive idea
of an algorithm. Most notable are those of Herbrand and Gdédel, Kleene,
Turing, Markov (see [9], chapter 5, or [8]), Church ([2]), and Post ([13]).
Each such attempt leads to a class of functions, and in fact these classes
turn out to be the same.

The fact that each attempt to formalize the notion of algorithm leads
to the same class of functions resulted in Church’s thesis (discussed in
[8], §§62 and 70), which claims that the intuitive notion of algorithm has
indeed been captured by the formal definitions referred to above. We
shall assume Church’s thesis, and, following Kleene, shall call the class of
functions determined by algorithms the class of general recursive functions,
or, more briefly, the class of recursive functions.

Unfortunately the class of general recursive functions is not the most
natural class of functions to deal with. The reason for this is that given
an arbitrary finite set of instructions and an argument, the computations
generated may not yield an answer; this means that a given finite set of
instructions may not be an algorithm. Even more seriously, if we assign
a code number to each finite set of instructions, there is no algorithm which,
when presented with an ordered pair <{z,y)> of natural numbers, will
determine whether the set of instructions numbered z will, when
presented with the argument y, yield an answer; this means that there is
no effective way of telling whether a finite set of instructions is indeed
an algorithm.

It is therefore more natural to consider finite sets of instructions, or
partial algorithms, rather than algorithms themselves. Any finite set of
ingtructions determines a function whose domain is some subset of N¥
(for the appropriate k) or, more succinctly, any partial algorithm deter-
mines a partial function. Each of the attempts mentioned above to
formalize the notion of algorithm extends naturally to a formalization of
the notion of partial algorithm. Again the resulting classes of partial
functions are identical; and, in this context, Church’s thesis claims that
the formal definitions capture the intuitive notions of ‘partial algorithm’,
or ‘finite set of instructions’. We shall use Kleene’s term—partial
recursive function—for a partial function determined by a partial
algorithm.

Since the class of partial algorithms is denumerable, it is possible to
assign to each finite set of instructions a code number; assuming that this
has been done, we let ¢, denote the partial function determined by the
finite set of instructions numbered e, and we write ¢, (z) ~ y if ¢, is defined
at z and has value y. (Assuming that finite sets of instructions involving
one argument are enumerated separately from those requiring two
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arguments, we are using ¢, ambiguously—but this should lead to no
confusion.)

We shall write ¢7(x) = y if, when presented with the argument z, the
set of instructions with number ¢ will compute the answer y in at most n
operations or steps. The notion of ‘in at most n steps’ can be defined
precisely in such a way that we may draw the following conclusions:

(i) if pf(x) =y then, for all m > n, ) =y and thus if ¢™(x) is

undefined and m > n then ¢*(z) is also undefined ;

(ii) p.(x) ~ y if and only if there is an n such that p™(z) = y;

(iii) if p(x) =y thenn > ¢, n > 2, and n > y.

We stress that the enumeration of all finite sets of instructions, in the
paragraphs above, is not a haphazard one. On the contrary, this enumera-
tion can be executed by an algorithm—that is, there is a partial recursive
fanction ¢(z,y) such that ¢ enumerates all partial recursive functions of
one variable; more precisely, for each ¢ and y, ¢(e, y) is defined if and only
if ¢ (y) is defined and, in case both are defined, they are equal. (This
condition is expressed by the ‘equation’ ¢(e,y) =~ ¢,(y).) Thus the set of
instructions for the partial recursive function ¢(x,y) contains ‘within it’
all finite sets of instructions for functions of one variable—since if it is fed
the ordered pair {e,y) it in effect turns to the algorithm for ¢, and feeds
into that the argument y. The existence of a so-called universal partial
recursive function, sometimes referred to as the enumeration theorem,
will be essential in the sequel, although we shall usually use it tacitly.

In the last few paragraphs we have discussed only the partial recursive
functions of one variable. The same discussion, however, could have been
presented for the partial recursive functions of % variables. Thus the
enumeration theorem, for partial recursive functions of k variables, states
that there is a partial recursive function ¢(x, y;, ¥,, ..., 9;) of k+ 1 variables
such that for each e and each y,,y,, ...,y the equation

@€ Y1, Yas oY) = PoY1sYas - > Yi)
holds.

A relation B = N*is said to be recursive if its characteristic function X,
is a general recursive function (where Xp, is defined by Xp(x) = 1if ¢ € R
and Xp(z) = 0 if # ¢ R). Intuitively a relation is recursive if there is an
algorithm which will determine whether or not each particular element
of N% ig in the relation.

The remaining material in this part of this section (‘Algorithms and
partial recursive functions’) is not needed for understanding the statements
or the proofs of Theorems 1-4 and Theorems 1*—4*, It will, however, be
needed to formalize the proofs; this formalization will play a more
important role in some of the later theorems and is therefore included.
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We mention here a number of recursive functions and recursive
relations and ways to get new recursive functions, sets, and relations from
old ones. The usual arithmetic operations f(z,y) =x+y, f(z,y) =2y,
f(z,y) = a¥ are all recursive, as is f(z,y) = ~ y = max(x—y,0). If fis a
recursive function then g(n) = ¥, f(x) is also recursive. The function
f(x) = P, is recursive, where P, is the xth prime, as is the function
f(s8,3) = (s);, the power of the prime P, in the unique factorization of s.
If f is a recursive function then so is A(n) = [],., P/®; since (h(n)), = f(x)
for each z < n, h(n) can be thought of as an encoding of the first » values
of the function f. The function A is thus called the course-of-values
function for f and is usually denoted by f—so that (f(n)), = f(x) forx < n
and (f(n)), = 0 for x > n. Any number s can be thought of as encoding
a finite sequence of numbers; thus if s = 2%3%,,.P,_,%-1, where s,_; > 0,
then s can be thought of as encoding {s,,$;,...,8,—1»- We define the
function ¢(s) =lh s, the length of s, to be n if s is as above. Thus
lh(f(n)) < n. This function is also recursive. The set of recursive functions
is closed under composition and under various ‘recursive’ definitions—for
example, if & is recursive and the function f satisfies the identities
f(n) = h(f(n)), then f is also recursive, for intuitively the given algorithm
for A can be converted into an algorithm which will effectively compute new
values for f from old ones. The set of recursive relations is closed under
union, intersection, and complementation. If one thinks of a relation as a
‘predicate’ rather than as a set of k-tuples, then what we have just said is
that the recursive predicates are closed under disjunction, conjunction,
and negation. Also if R(x,y) is a recursive predicate then the predicate
(3) ey, Rz, y)—there is an x <n such that R(x,y)’—is a recursive
relation of n and ¥, since it is easy to build an algorithm for this predicate
from a given one for R. On the other hand, the predicate (Ix) R(x,y)
need not be recursive since the natural algorithm to build will end up
searching for an z and, if it fails to find one, will keep searching, even if no
z exists. Similarly (V )., B(z,y)—for all x < n, R(x,y)—is a recursive
predicate if R is, but (V) B(z,y) need not be. Thus recursive relations
are not closed under projection. If R(z,y) is a recursive relation then the
function f(y) = px B(x,y)—the least x such that R(z,y)’—mneed not be
recursive, since for a fixed y, there may be no such z. But, if R is a recur-
sive relation and (V ¥) (3 ) B(x,y) holds then the function f(y) = ux R(z, y)
is recursive and it is clear how to build an algorithm for f from an
algorithm for R. Finally, if f is a recursive function and ¢ is any function
which agrees with f in all but a finite number of places, then g too is
recursive, for we can construct an algorithm which at that finite set of
arguments gives the answers appropriate for g and otherwise will act just
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like the original algorithm for f. Further details about recursive functions
and relations can be found in [14] or in [9], pp. 120-30, but this sketch
includes the information about them needed for this paper; that is,
anything we claim to be recursive is recursive by an argument which is
related to what appears above.

Relative recursiveness. Let A be a fixed set of natural numbers. Suppose
that we modify the notion of partial algorithm so that, in the course of a
computation, questions of the form ‘Is n € A¥ may be asked for any
number n. When such a question is asked, the computation may continue
in one way if an answer of ‘Yes’ is received and another way if ‘No’ is the
answer. The partial function obtained from such a partial algorithm is
said to be partial recursive relative to A, or, simply, partial recursive in A.
Intuitively a partial function is partial recursive in A if there is a finite
set of instructions such that, if the computation it describes is performed
using answers supplied by an ‘oracle’ which knows (the characteristic
function of') 4, then the given partial function is obtained. For each set 4
there is an enumeration (by a 2-place function partial recursive in A4) of
all the 1-place functions partial recursive in 4. The one determined by the
finite set of instructions numbered e is denoted 2.

Instead of using an oracle which knows (the characteristic function of)
the set 4, we could use an oracle which knows a given (arbitrary) function
fand ask questions like “‘What is f(n) ?’ in the course of a computation. In
this case the partial function determined by the finite set of instructions
numbered e is denoted ¢!. If a partial function is partial recursive in f and
is everywhere defined then it is said to be recursive in f.

We have thus defined a relation on the set of all functions. If one identi-
fies a set with its characteristic function, we can give meaning to the
phrases ‘4 is recursive in B’, ‘4 is recursive in f’, and ‘f is recursive in 4.
The relation ‘X is recursive in Y’ is both transitive and reflexive, and is
denoted by X < Y. We say that X and Y have the same degree of un-
solvability if X < Y and Y < X; thus a ‘degree of unsolvability’ can
be viewed as an equivalence class. The degrees of unsolvability are
partially ordered by the relation <. The lowest degree of unsolvability
is the equivalence class consisting of the recursive sets, since a recursive
set is recursive in any other set; this degree is denoted by 0.

A set of natural numbers is said to be recursively enumerable if it is the
range of a partial recursive function—thus for example, the set of primes
is recursively enumerable since it is the range of the partial recursive
function P described above. Every recursive set is recursively enumerable
but there are recursively enumerable sets which are not recursive. Thus
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there are recursively enumerable sets whose degree of unsolvability exceeds
0. The degrees of unsolvability of recursively enumerable sets, however,
cannot be ‘arbitrarily large’. To verify this, one first observes that, since
there are a countable number of partial recursive functions, there are a
countable number of recursively enumerable sets. One then defines a
set A, whose members are all prime powers, by stipulating that Pj e 4
if an only if # is an element of the nth recursively enumerable set in some
fixed enumeration of the recursively enumerable sets. It is clear that each
recursively enumerable set is in fact recursive in A and, thus, that the
degree of A is an upper bound for the degrees of all recursively enumerable
sets; that it is not an upper bound for the degrees of all sets is a
consequence of the fact that only a countable number of sets are
recursive in A. This argument can be refined by first showing that there
is a recursive enumeration of the recursively enumerable sets; the following
conclusion is then obtained.

There is a recursively enumerable set such that every recursively
enumerable set is recursive in it ; the degree of such a set is denoted by 0’. An
example of a recursively enumerable set of degree 0’ is the set K of all
numbers e such that ¢,(e) is defined. This set K is the range of the partial
recursive function i) computed according to the instructions ‘Try to
compute g,(e); if you successfully complete a computation of p,(e), then
put J(e) equal to e.’

The class of recursively enumerable sets can be characterized as the
class of projections of recursive relations. That is, 4 is recursively
enumerable if and only if there is a recursive relation R such that for
every , « € A if and only if (y) R(x, y). To verify this, we first assume that
A is the range of the partial recursive function i and let R(x,y) be the
relation ‘the computation of ¥((y),) is completed in at most (y), steps and
the result of the computation is 2’; clearly z € 4 if and only if (3y) R(=,y).
On the other hand, given a recursive relation R, let ¢y be the partial
recursive function determined by the following instructions: ‘To find
(x), determine whether R(x,0) holds, whether R(z, 1) holds, et cetera,
and as soon as a number ¥ is found for which R(z,y) holds, put () equal
to x.’

More generally a relation P < N¥ is recursively enumerable if and only
if there is a recursive relation B < N*+ such that for every {z,,z,, ..., %),

{®y,%q, ..., %y € P if and only if (3y) B(xy, @y, ..., %5, Y)-

Now any recursively enumerable set is recursive in 0’, so that any
projection of a recursive relation is recursive in 0'. Consider a set A
defined by z € A4 if and only if (V y) R(2,y), where R is a recursive relation.



622 ALFRED B. MANASTER AND JOSEPH C. ROSENSTEIN

The complement 4 of A thus satisfies » € 4 if and only if (3y)~ R(x, Y)
and ~ R is a recursive relation so that A4 is recursively enumerable.
Since 4 and 4 have the same degree of unsolvability, any set (or relation)
defined by one quantification of a recursive relation is recursive in 0.

If d is any degree < 0’ and D is a set of degree d then, since X, is
recursive in 0’, there is a number ¢ such that X;, = X. There are two
ways in which one could attempt to compute X;,. One is simply to use an
oracle for K, as described earlier in this section. Another is to use the fact
that K is recursively enumerable and, rather than assume K to be given,
try to construct it in the course of the computation. Thus, for example,
one can define K™ to be {e|p,(e) is defined in at most n steps} so that K»
is approximately what K appears to be after n steps in its enumeration.
One could then, to determine whether a € D, find for each n the set KX» and
attempt n steps of the computation of X"(a). The value thus obtained,
if it exists, will be denoted ¢X:"(a). Because of the description above this
can be thought of as a partial recursive function of the three variables
¢, n, and a. As n increases the sets K” will change in appearance so that
pE(a) may take on many different values for fixed a and ¢ as n increases.
If, however, ¢X(a) = b then for sufficiently large n all properties of K used
oracularly in the computation will be shared by K* and thus, for all
m = n, p-™a) =b. We shall use this description of X in Theorems 7
and 8.

The jump operator. The discussion of the preceding section which led
from 0 to 0’ can be repeated in a more general way to go from an arbitrary
degree d to its jump d’. Thus, given a degree d we say that a set A4 is
recursively enumerable in d if there is a function which is partial recursive
in d (i.e. in any set of degree d) whose range is 4. There are sets which
are recursively enumerable in d which are not recursive in d. In particular,
if D is any set of degree d then the set K2 described by e € K2 if and only
if ¢P(e) is defined is recursively enumerable in d and every set recursively
enumerable in d is recursive in it. Its degree does not depend on the
choice of D so we may define d’ to be the degree of K2,

If A is recursively enumerable in d then there is a predicate R(z,y)
recursive in d such that z € 4 if and only if (3y) R(x,y). Conversely, if
R(z,y) is recursive in d then the set {x|(3y)R(z,y)} is recursively
enumerable in d and therefore recursive in d’. Similarly any relation
P = N* for which there is a relation R < N*+ recursive in d such that
{%y, ..., %,y € P if and only if (Jy) R(zy, ...,2,,¥) is also recursive in d'.
Also if there is a relation R < N*+! recursive in d such that (z;, ...,%,> € P
if and only if (Vy) R(xy, ..., %, y), then {zy, ...,x,> € N\\P if and only if
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(3y) ~ R(@y, ..., %, y) 80 that N¥\P is recursive in d’ and therefore so
is P.

Now assume that there is a recursive relation R(x,%,, ...,%,¥,?) such
that {x;, %y, ..., %,y € P if and only if

(V2)(Ay) By, ..., %y, Y, 2).

Then the predicate (3y)R(xy, ..., %y, ¥,2) is recursive in 0’ and so P is
recursive in 0" = (0')".

2. Definitions. (1) Aneven natural number is called o boy ; an odd natural
number is called a girl. We use B(n) for 2n and G(n) for 2n+1 and say
that B(n) is the nth boy and that G(n) is the nth girl.

(2) If R is a binary relation on N (the set of natural numbers), we shall
say that ‘= knowsy y’ instead of ‘(x,y) € R’. If there is no danger of
confusion we shall say simply ‘z knows y’.

(3) A society is a binary relation B on N such that (i) £ is symmetric,
(ii) if # knows y then @ and y are of different sexes, (iii) each person knows
just a finite number of people, and (iv) each person knows some other
person. If the relation R satisfies just (i), (ii), and (iii), then it is called &
partial society.

(4) If R is a partial society we partition the field of R into equivalence
classes, called communities of R, by stipulating that ‘z and y are in the
same community’ if there is a finite sequence z;,,, ..., %, such that »,
is , x,, is y, and @; knows z;,, for 1 < ¢ < n. If C'is a community of R, and
if there is no possibility of confusion, we shall speak of ‘the community c’
whenever we have in mind ‘the partial society (C x C)nR’.

(5) If R is a partial society and f is a one-to-one function whose domain
is {n|B(n) is in the field of R}, then f is called a solution to the marriage
problem of R or, briefly, a solution of R, if B(n) knows ({ f(n)) for every n
in the domain of f.

(6) A partial society R is said to be solvable if there is a solution to the
marriage problem of E.

Marshall Hall Jr’s extension of the Philip Hall theorem, mentioned in
the opening paragraphs, implies that a partial society R is solvable if and
only if every n boys know among them at least n girls.

It is evident that a partial society is solvable if and only if each of its
communities is solvable; it has a unique solution if and only if each of its
communities has a unique solution.

(7) A society S is said to be recursively solvable if there is a general
recursive function f which is a solution to the marriage problem of S.
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The alert reader will have noticed that these definitions embody
various sociological biases. For example, a solution to the marriage
problem of a society S assigns a partner to each boy but may leave certain
girls unattached. This sexist attitude is not essential, as will become
clear in §3, where we shall deal with the symmetric marriage problem.
In §4 we shall discuss briefly other sociological variations of the marriage
problem,

Conventions. The proofs of Theorems 1, 3, 7, and 8 have certain
similarities which we mention here. In each case we shall define a recursive
society S by stages—i.e. at stage n, for each n > 0, we shall define a
partial society S, so that S = U5, has the desired properties. Instead
of saying ‘put (z,y) into 8, during stage n, we shall say ‘introduce x to g’
during stage m. A person is called a stranger at a given point in the
construction if at that point he has not yet been introduced to anyone.
At the beginning of each stage of the construction, there are numbers a
and b such that the first @ boys and b girls are not strangers whereas the
remaining boys and girls are; we shall reserve the letters ¢ and b for this
purpose, so that B(a) and G(b) will always denote the first male and female
strangers, respectively.

The community to which the boy B(i) belongs at the beginning of
stage n will be denoted C,(i). (Note that C,(¢) is a community of the
partial society S, ;.) We shall call the community C,(:) stable if
C,,(i) = C,(3) for all m > n. In the course of the construction no two non-
strangers will ever be introduced ; in particular, if C,(¢) is stable this implies
that no member of C,(¢) will ever meet someone new. Hence if C, (1) is
stable and B(p) and G(q) are in C, (i), then if B(p) cannot marry GQ(g) in
C,(?) (i.e. if there is no solution to the marriage problem of C,(¢) in which
B(p) marries G(g)), he cannot marry her in S, and if B(p) must marry
G(q) in C,(¢) he must marry her in 8.

TuEOREM 1. There ts a recursive society S which is solvable but not
recursively solvable.

Proof. We precede the actual construction of S with an intuitive
discussion of how it works. In the course of the construction, we must
guarantee that no general recursive function is a solution to the marriage
problem of §; however, it is more natural to construct S so that for each
e the partial recursive function ¢, cannot be a solution to the marriage
problem of S. To do this it is sufficient to make certain that, for each e,
there is some boy who cannot marry the girl whom the eth partial recursive
function would assign to him. Therefore, for each e we set aside a boy
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B(r(e)) and give him a mate, with the understanding that if we later
discover that she is actually the girl G(p,(7(e))) whom the eth partial
recursive function would have him marry, then we will take steps to
prevent the marriage. The action we take in such a case is to introduce a
new boy to G(p,(r{e))) and a new girl to B(r(e)). If we ensure that the
resulting community is stable then in any solution to the marriage problem
for § the new boy will win the hand of G(¢(r(e))) and therefore B(r(e))
will have to marry the new girl.

The only difficulty with this plan is that when we try to compute
@.(r(e)) to see whom ¢, wants B(r(e)) to marry, no answer may be forth-
coming. We cannot keep trying to compute ¢,(r(e)) for ever, since it is
possible that the computation will never terminate and since it is necessary
for the construction to continue. So we agree that if at stage n we are
concentrating on ¢,, then we perform at most » steps of the computation
of p,(r(e)), and, if we still get no answer, then we abandon the computation
and proceed to stage n+ 1. But in that case there must be some provision
made for resuming the computation of ¢,(r(e)) later on, because it is quite
possible that with additional time the computation of ¢ (r(e)) would
terminate. We therefore arrange matters so that for each e there are
infinitely many stages of the construction when we concentrate on
@,—specifically, we concentrate on ¢, at each of the infinitely many stages
n when n = 2¢.q for some odd number g. We make critical use of the fact
that if ¢,(r(e)) is defined, then it is defined in finitely many steps and
hence by some stage »; for using this fact we know that if some action is
necessary, then the construction will afford us an opportunity to take that
action.

With this description in mind we proceed to define simultaneously the
society S and a one-to-one recursive function r; at the end of stage n, r(e)
will be defined for all e < n.

Stage m. Introduce B(a) to G(b) and let r(n—1) =a. Suppose that
n = 2¢.q, where ¢ is odd. If ¢?(r(e)) is defined (i.e. if ¢(r(e)) is defined in
at most n steps), if B(r(e)) knows G(p?(r(e))), and if these two comprise the
community C,(r(e)), then we introduce B(r(e)) to G(b+1) and G(p*(r(e)))
to B(a+1). Otherwise we proceed directly to stage n+1.

This completes the definition of the construction. We must show that

(i) S is recursive,
(ii) 8§ is solvable,

(iii} 8 is not recursively solvable.

As to (i), we note first that in any introduction at least one of the
partners being introduced is at that time a stranger. We note also that
B(n) and G(n) are no longer strangers by the end of stage n+ 1. Hence to
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decide whether or not B(n) knows G(m) we need only to reconstruct
effectively (using the enumeration theorem) the first » +m stages of the
construction above and see whether or not they have been introduced by
that stage. Thus the recursiveness of 8 is guaranteed by the fact that we
never introduce two non-strangers in the course of the construction.
Note that in claiming to have proved that § is recursive, we are making
use of Church’s thesis which says that the algorithm described here can
be formalized. If we did that it would become very evident that critical
use is being made here of the enumeration theorem as was claimed earlier.

As to (ii), we need only remark that for each ¢ and each n > e the
community C,(r(e)) is solvable, and furthermore that for sufficiently large
n, C,(r(e)) is stable.

As to (iii), let f be any recursive function, say fis ¢,. Since f is recursive,
o,(r(e)) is defined. Choose n sufficiently large so that »(e) is defined before
stage n, ¢?(r(e)) is defined (and hence equal to ¢,(r(e))), and so that
n = 2%q, where ¢ is odd. At the end of stage » it will not be possible for
B(r(e)) to marry G(p?(r(e))) and, since C, ,(r(¢)) is stable, nothing done
later on can ever bring them together.

The society constructed in the proof of Theorem 1 has a unique solution
to its marriage problem. Thus the condition that the society have a
unique solution is not sufficient to guarantee that a recursive society be
recursively solvable. The following condition, in conjunction with the
condition above, will be sufficient.

A recursive society S is said to be highly recursive if there is a recursive
function % such that, for each ¢, the number of girls whom B(¢) knows is
exactly A(z).

To see the effect of this condition, let us imagine a matchmaker in a
recursive society. If he were asked to find a partner for the boy B(z) he
might start by listing out all the girls whom B(:) knows. He would do
this by consecutively asking whether B(7) knows G(0), whether B(7) knows
G(1), et cetera. Since B(7) knows only a finite number of girls the match-
maker would eventually complete the list of girls that B(¢) knows.
Unfortunately he may not know when he has completed the list. If he
stops at any G(j) he runs the risk that perhaps B(i) knows G(j+1), and in
fact should marry her; if he keeps going forever, he will never get to his
job of marrying off B(3).

In a highly recursive society, the matchmaker’s task is much easier;
for he can first determine effectively how many girls B(:) knows, and
once he has found that many girls, he knows that his list is complete and
can then get on with his job.
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The intuitive description above of the difference between a recursive
society and a highly recursive society is reflected in the proof of the
theorem below.

THEOREM 2. If S is a highly recursive society and the marriage problem
for S has a unique solution, then that solution is recursive.

Proof. We shall describe an algorithm which the matchmaker can use
to find the solution to the marriage problem for 8. The fact that the
algorithm works is a consequence of the combinatorial fact that

(%) if R is a partial society which has a unique solution to its
marriage problem then some boy in the society must know only
one girl.

This statement is a consequence of the lemma which is proved below.

The matchmaker begins by computing A(0), 2(1), 2(2), ... until he finds
a boy who knows only one girl. That this search will be successfully
completed follows from (*) and the assumption that S does in fact have a
unique solution to its marriage problem. Let B(s,) be the boy that he finds
who knows only one girl; he now proceeds to determine whether B(s,)
knows G(0), whether B(¢g) knows G(1),... until he finds the unique girl
whom B(:y) knows. Let G(j,) be this girl. It is clear that in the unique
solution to the marriage problem of S, the boy B(i,) must actually
marry G(j,)-

Now let R, be the partial society obtained from § by deleting B(%,)
and G(j,). Since R; must have a unique solution to its marriage problem,
the matchmaker realizes (using the lemma) that some boy in B, must
know only one girl in R,. His task is to find such a boy. He could of
course continue computing z(iy+ 1), h(iy+2), ... until he finds some ¢ for
which %(7) = 1, but this search may never end, for it could happen that
the boy he seeks in fact knows two girls one of whom is G(j,). To take this
possibility into account he must go back to the beginning—considering
h(0), A(1), A(2), ... until he finds a boy who knows exactly one girl of R,.
With each ¢, he computes i(¢); if A(¢) > 2 he goeson to ¢+ 1, and if ~(¢) = 2
he determines whether B(¢) knows ((j,) and if not he goes on to ¢+ 1; but
if (2) = 2 and B(i) knows G(j,) or if (1) = 1 and 7 # 4,, then he stops and
identifies B(i) as B(i,) and the unique girl of R, he knows as G(j,). It is
clear that in the unique solution to the marriage problem of S, the boy
B(¢,) must actually marry G(j,).

The matchmaker proceeds inductively. Assume that after a certain
time he has identified » boys B(i,), B(), ..., B({,—;) and n» girls
G(Jo)s G(41)s ++v» G(Jp—y) whom they must marry in the unique solution to
the marriage problem of S. Let R,, be the partial society obtained from §
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by deleting these n couples; then B, has a unique solution to its marriage
problem, hence by () there is a boy in R, who knows exactly one girl
of R,. The matchmaker wants to find such a boy. He calculates
consecutively 2(0), A(1), 2(2), .... For each ¢ different from <y, 4, ..., ¢,
for which A(¢) < n+ 1 he determines which of G(j,), G(j1), ..., G(4,_;) the
boy B(i) knows and subtracts their number from A(¢). If the result is 1
he has his man; otherwise he goes on to the next boy. Since (*) holds he
knows that he will be able to find a boy B(3,) and a girl G(j,,) whom he
must marry in the unique solution to the marriage problem of S.

This completes the description of the algorithm. We must now show
that it works. That is, suppose a boy B(t) comes to the matchmaker
seeking his wife; can the matchmaker find her for him %

The matchmaker sets the algorithm into progress from the beginning
and pairs off B(i,) with G(j,), B(¢;) with G(j,), .... He actually finds a
partner for B(¢) if and only if B(t) is B(3,) for some . So we must show
that this is indeed the case.

Suppose then that B(#) is none of the boys B(7,), B(s,), ...; hence in the
unique solution to the marriage problem of S he marries some girl other
than G(j,), G(j1), .... If he knows exactly one girl other than G(j,),
G{41), ..., then, since he knows only a finite number of girls altogether,
there is a k such that he knows exactly one girl other than G(j,), G(j,), ...,
G(ji). But if that is the case, then he would be one of the boys
B(ig,), B(iga), -..r Bligy). Thus each B(t) who is not enumerated in the
sequence B(¢,), B(i;), ... knows at least two girls not enumerated in the
sequence G(j,), G(j), .... Thus the partial society N<_, R,,, if it contains a
boy, cannot be uniquely solvable because of (*). But it is uniquely
solvable, hence it can contain no boy ; therefore B(t) must be one of the boys
in the sequence B(i;), B(7,), .... Hence by following this algorithm the
matchmaker will effectively find a mate for any boy. Thus an application
of Church’s thesis guarantees that the solution is indeed a general
recursive function.

For the reader who feels he would like to see the solution to the marriage
problem of S defined explicitly (and for use in a later theorem) we present
the following formal description.

We define a recursive predicate A(s,t,z,n) which says that ‘s and ¢
represent sequences of length n, B(z) is a boy different from B((s),),
B((s),), ..., B((8),—1), and B(z) knows exactly one girl besides G((t),),
G((t)y); .- G{(t)—y).” Formally A(s,t,z,n) is

n+1
(lhs =Tht =n)A Az # (s);A !1 [h(z) =M ( ZXR(B(Z),G((t)j))) =4 1].

i<n j<n
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(Here X is the characteristic function of the relation R, A;., means ‘the
conjunction over all ¢ < n’, and V4! means ‘the disjunction over all s,
1<i<n+l’)

Define simultaneously two recursive functions

in) = pz A(i(n), (n), 2,m)
§(n) = pes [R(B(z‘(n)), FHa))A Aw <5<n)r>]

r<n

by a simultaneous course-of-values recursion.

Then B(i(n)) and G(j(n)) are respectively B(i,) and G(j,) found above.

Define n(t) = un (t = i(n)). Then = is recursive and B(t) is B(i(n(t))) for
each £. Finally, we define a recursive function y by y(¢) = j(=(¢)).

Then in the unique solution to the marriage problem of S the boy B(¢)
marries G(y(t)) for every ¢. This completes the proof.

Before we prove the lemma we present a corollary to the theorem just
proved.

CorOLLARY. Let S be a highly recursive society whose marriage problem
has a finite number of solutions. Then these solutions are all recursive.

Proof. Let f be a solution to the marriage problem of S and let
fi> e - s[5 be the remaining solutions. Let B(ry), B(ry), ..., B(rg) be such
that f(r;) # fi(ry), f(ra) # folre), -, f(rg) # fx(rg). Let S* be the society
which differs from S only in that B(r,) knows just G(f(r)) for 1 <t < K.
Then S* is a highly recursive society, since it is finitely different from 8.
Furthermore, 8* has a unique solution to its marriage problem, namely f.
Hence f is recursive.

We now prove the lemma. That it implies the statement (*) used in the
proof of the theorem is obvious.

LuEMMA. Let R be a partial society in which each boy knows at least two
girls. If R is solvable, then the marriage problem of R has at least two
solutions.

Proof. Let f be a solution to the marriage problem of E. Let B(i;) be
any boy in R and let f(i;) = j; so that the solution f marries B(%,) to G(j,).
Let G(j,) be a different girl whom B(i;) knows. If the solution f leaves
G(j,) unmarried, then we can define a new solution f* which marries
B(i,) to G(j,) and each other boy B(i) to G(f(¢)). So we may assume that
Ja = f(i3) so that f marries B(i,) to G(j,). Proceeding inductively we may
assume that we have defined K different boys B(%,), B(iy), ..., B(ix) and
K girls G(4,), G(Ja); - .., G(jx) such that f marries B(i,) to G(j,) for 1 <t < K



630 ALFRED B. MANASTER AND JOSEPH G. ROSENSTEIN

and such that B(i) knows G(j,,,) for 1 <t < K. By assumption B(ig)
knows some girl other than the one he marries. There are now three
cases. If B(¢x) knows G(j,) for some ¢ < K then we can define a new
solution f* which marries B(ix) to G(j), B(i) to G(j,.), B(iy,) to
F(Jit2)s > Blig_y) to G(jx) and each other boy B(z) to G(f(3)). If B(i)
knows some girl other than G(j,), ..., G(jx)—call her G(j.,,)—and she
remains unmarried in the solution f, then we can define a new solution
S* which marries B(ig) to G(jx,4) and each other boy B(i) to G(f(i)).
Finally, if G(jx,,) is married in the solution f then her partner is different
from B(iy), ..., B(ig)—call him B(i,,)—and we can proceed to the next
step of the induction.

There are thus two possibilities. Either along the way we find a second
solution or the inductive process continues without end. That is, we define
a sequence (B(¢)|¢ > 1) of boys and a sequence (G(j,)|t > 1) of girls such
that f marries B(3,) to G(j,) for all t > 1 and such that B(s,) knows G(j,,,)
for all £. But if this is so, we can define a new solution f* which marries
B(i) to G(j,,) for all £ > 0 and which marries any other boy B(i) to

G(f (@)
It is reasonable to suppose, on the basis of the evidence of Theorem 2,

that any highly recursive society has a recursive solution. We now show
that this supposition would be incorrect.

DEriNtrioN: A society in which every person knows exactly k other
people is called a k-society. It is clear that any recursive k-society is
highly recursive.

THEOREM 3. There exists a recursive 2-society S which is solvable but not
recursively solvable.

Proof. We precede the actual construction of S with an intuitive
discussion of how it works. As in the proof of Theorem 1 we must
guarantee that, for each number e, ¢, cannot be a solution to the marriage
problem of 8. In that proof we set aside, for each e, a boy B(r(e)) and
succeeded in arranging matters so that if ¢, (r(e)) were defined than B(r(e))
could not marry G(p,(r(e))). Here we are operating under the additional
constraint that each boy must know exactly two girls, so the society S
cannot have communities like those in the society constructed in
Theorem 1.

We will set aside, for each e, two boys B(r,(¢)) and B(r,(e)) and guarantee
that in any solution to the marriage problem for the society at least one
of them will be unable to marry the girl assigned him by ¢,. If in the
course of the construction there never appears to be any danger that ¢,
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may be a solution then the communities of B(r.(e)) and B(r(e)) remain
distinct and keep expanding so that in S the community of B(r(e)) will
look like Fig. 1 (where one person knows another if and only if there is a
line joining them), so that each person indeed knows exactly two other
people.

? Q Q ? Q %
Fic. 1

If on the other hand, it does appear to be possible for ¢, to be a solution
to the marriage problem of S—that is, if @ (r(e)) and @,(r,(e)) are at some
point defined and if B(r,(e)) knows G(p(r;(e))) for i = 1,2 then we will
take the communities that the two boys are in at that stage of the
construction and splice them together in such a way that in no solution to
the marriage problem of § can both of them marry the partners which ¢,
has destined for them. (The precise definition of this ‘splicing’ necessitates
the notational complexity found below.)

We proceed now to define simultaneously the society S and two one-to-
one recursive functions 7, and r;, whose ranges are disjoint. At the end of
stage n, both ry(e) and r,(e) will be defined for all e < n.

We assume as part of the inductive hypothesis that at the beginning
of stage n each person who is not a stranger is in a community C,(r(e))
for some ¢ < n—1 and for some ¢ < 2. We further assume that for each
such community there is a number & such that C,(r(e)) contains k& boys
B,,B,,...,B; and k+1 girls Gy,@,, ..., Gy, Gyyq and that B; knows G if
and only if they are joined by a straight line segment in Fig. 2. We further

Bl /B\/\ \
¢y g, G Gi1 Gira O G
F1c. 2

assume that if B(ry(e)) and B(ry(e)) are in the same community at the
beginning of stage n, then ¢ (r(e)) is defined and B(r,(e)) knows G(p.re)))
for cach ¢t < 2 and also that, if B(r,(e)) is B; and B(r,_(e)) is B; where ¢ < j,
then Q(p,(r/e))) is Gy, and G(p,(r_(e))) is G}, so that once the construction
is completed, and the community of B(ry(e)) looks like Fig. 1, it will be
impossible for g, to be a solution to the marriage problem of §.



632 ALFRED B. MANASTER AND JOSEPH G. ROSENSTEIN

We assume further that if e 5 ¢’ then O, (r,(e)) and C, (r,(e")) are distinet
for any ¢ and ¢. Finally, we assume that the community C,(r(e)) is
always enumerated (as in Fig. 2) in such a way that if B(r,(e)) is B, then
Gy < @iy (ie. if G; s G(z) and Gy, is G(y) then = < y) except that in case
B(ry(e)) and B(ry(e)) are in the same community then we only make that
assumption for ¢ = 0.

Stage n. Introduce B(a) to G(b) and G(b+1) and let ro(n—1) = a.
Introduce B(a+1) to G(b+2) and G(b+3) and let r,(n—1) = ¢+ 1. Then
the communities C, ,(r,(n— 1)) will be of the correct form.

Suppose that n = 2¢.q where ¢ is odd. If B(ry(e)) and B(r,(e)) are in the
same community then we just expand that community by introducing
B(a+2) to ¢, and to G(b+4) and B(a+3) to G;,, and to G(b+5). If
B(ro(e)) and B(r,(e)) are in different communities, say C,(r(e)) has boys
B, ..., B and girls Gy, ..., Gy, and C,(r,(e)) has boys B¥, ..., B¥ and girls
GY, ..., Gff; then we make the necessary introductions so that the
resulting communities are displayed in Fig. 3.

/B(a\+;lfl\ B; B By Bla+3)
@ b+4) G, Gy Gy G G U Oy GH+5)
B(a+4) Bf B i, BY B (u+5)

Gb+6) GF  GF G GY, G, GF G, GO+
Fi1c. 3

We now ask whether gZ(ry(e)) is defined. ¢2(r,(e)) is defined, B(ry(e))
knows G(g3(ry(e))), and B(r,(e)) knows G(p(r4(e))). If any of the answers
is negative, we can go on to the next stage of the construction. If all of
the answers are positive then there is a danger that ¢, may become a
solution to the marriage problem of § and that must be prevented.

Suppose then that B(r(e)) is B; and that B(r,(e)) is B¥. There are four
cases.

(a) If G, is Glp,(r(©)))

and if GF is G(p,(ry(e)))

then introduce B(a+6) to G(b+4) and G(b +6).
(b) If G, is Gl (ry(e)))

and if G¥,; is G(p.(r,(e)))

then introduce B(a +6) to G(b+4) and G(b+17).
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(c) If Gy is Glp(ro(e)))
and if GF is G(p,(r(e)))
then introduce B(a + 6) to G(b+5) and G{(b + 6).
(d) If Gy s Glp.(7o(e)))
and if Gy, is G(p,(r,(€)))
then introduce B(a+ 6) to G(b+ 5) and G(b + 7).
Note that these introductions make the community C, ,(7(¢)) look like
Fig. 4 (in case (a)) and that, if this community is expanded only at its
ends, no solution can marry both B, to G; and B} to G7.

Ba+5) Bfy  BY Ba+4) B+6) Bu+2) B, By Bla+3)

FANSNAR

GO+7 Gf, Gf  GF GB+6) Gh+4) Gir Gige GO+5)

F1c. 4

This completes the nth stage of the construction. Before we proceed
to stage n+1 we must renumber the people in the communities
C,.1(r(e)) so as to conform with the induction hypothesis. Note that
once this is done all of the parts of the induction hypothesis continue to
hold at the end of stage n.

This completes the definition of the construction.

We must now show that the society § which results from the construe-
tion above is indeed a 2-society, is recursive, has no recursive solutions,
but is solvable. That it is a 2-society and is solvable follows from the fact
that each community of § has the form described by Fig. 1. That it is
recursive follows, as in Theorem 1, from the precautions taken to ensure
that two non-strangers are never introduced in the course of the
construction. (Again implicit use is made of the enumeration theorem.)
That it has no recursive solutions follows from the precautions taken (see
Fig. 4) to ensure that not both B(ry(e)) and B(r,(e)) can marry the partners
which ¢, would have them marry.

Theorem 3 can be generalized ; in fact, it is possible to construct for each
k a recursive k-society which is solvable but is not recursively solvable. A
proof of this assertion will appear elsewhere.

Now that we have shown that, even if a solvable society is highly
recursive, it need not have a recursive solution, it is reasonable to ask
whether some other condition, stronger than highly recursive, would
guarantee the existence of a recursive solution.

The strongest possible condition of this type can be described in the
following way. To say that a society is recursive is to say that any
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question of the form ‘Does B(n) know G(m)? can be answered effectively.
To say that a society is highly recursive is to say that, in addition, every
question of the form ‘Does B(n) know exactly k girls?’ can be answered
effectively. The strongest possible condition of this type would be that
every question about § formulated in the first-order predicate calculus be
answered. effectively. (A question about 8 is said to be formulated in the
first-order predicate calculus if it can be described using only the formulas
R(t1,t,) and t, =1, where ¢, and ¢, are either variables or numbers, the
logical connectives ‘and’ (A), ‘or’ (V), ‘not’ (~), “if...then’ (=) and ‘if
and only if’ («<>), and the quantifiers ‘for all’ (V) and ‘there exists’ (3)
which range over the natural numbers. Thus the question ‘Does B(n)
know G(m)?’ corresponds to R(2n, 2m+ 1); the question ‘Does B(n) know
exactly three girls?’ corresponds to

(A1) (Fvy) (F0g) [0y # VAV # VAV, # vy
AR(2n,v,) A R(2n,v,) A R(2n, v;)
AV ) (B2n,w) > (w0 =1 Vo = v,ve = 1,))].

Similarly questions such as ‘Does the community of B(n) have at least
67 members ?’ and ‘Are there three boys who know between them at least
six girls ?’ can be formulated in the first-order predicate calculus.) Such
a society is said to be decidable.

It is easy to construct societies which are highly recursive but not
decidable. For example, if we were to modify the construction above so
that when the communities of B(ry(e)) and B(r,(e)) are combined, the
remaining ends of the resulting community are appropriately connected,
there is no reason to expect that one should be able to determine effectively
whether there exists a community with exactly 8,000 people in it.

It is possible to show, using an elimination of quantifiers procedure,
that a recursive 2-society in which every community is infinite is in fact
decidable; therefore the society constructed in Theorem 3 is decidable.
Although the proof of this fact will not be given in detail here, we indicate
for those familiar with the elimination of quantifiers procedure what
predicates must be adjoined to the language in order to carry out the
argument. For each n > 0 let ‘|x,y| = n’ mean ‘there exists a sequence
X = Pg, P1s -+ Py = ¥ of n different persons, such that for each ¢ < n—1,
R(pypia)- Let ‘z,y] > v mean ‘@ # y) A Agetan (~ (12,y] = 1)), The
addition of the predicates |x,y| = » and |2,y| > n for all n to the language
makes it possible to eliminate quantifiers and thereby leads to a decision
procedure for the society S.
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TurOREM 4. There is a decidable society S which is solvable but is not
recursively solvable.

Having shown that even a highly recursive society which is solvable
need not be recursively solvable it is natural to ask how far from recursive
its solutions may be.

THrEOREM 5. Let S be a highly recursive society which is solvable. Then S
has a solution whose degree of unsolvability does not exceed 0.

Proof. For each n let S, be the partial society
{B(9)|1 < n}u L<J {G(j)| B(¢) knows G(j)}.

By assumption each S, is solvable, so if we let 7, be the set of all solutions
to the marriage problem of 8§, then 7;, # @. Let T = U, .y T, and define
a partial ordering on 7' by f < g if g extends f. With this definition 7" is a
tree which branches finitely and which has an infinite number of nodes.

Thus Koénig’s lemma applies. (See [12], p. 165, or another book on Set
Theory for a discussion of this result.) Our proof consists of a careful
analysis of the proof of Konig’s lemma, since finding a solution to the
marriage problem of S is equivalent to constructing an infinite path in 7'.

The proof of Konig’s lemma starts by finding an element f,, in 7j which
has infinitely many elements of 7' extending it; this is possible since there
are only finitely many elements of 7}, and infinitely many elements in 7'
each of which extends some element of 7;. Proceeding inductively we
assume that we have defined an element f,, € 7], which has infinitely many
elements of 7" extending it; we now look at the finitely many elements of
T, ,, extending it and, as above, find an element f, ., in T, ; which extends
fr and which has infinitely many extensions in 7'.

To apply recursion-theoretic techniques to this proof we must first
specify which element of 7)., we choose to be f,,, if there is more than
one which extends f,, and has infinitely many extensions in 7. Let us
specify that f,,, is that element of 7}, which has these properties and
which has the smallest possible value at n + 1.

Let f be the (unique) extension of all the f,. Clearly f is a solution to
the marriage problem of §. We shall show that this function f has the
desired property.

For consider the following property of the numbers 2, s, and n: ‘that s
codes a sequence of n+ 1 numbers §;,S8;,S8,,...,8,; that a solution to the
marriage problem of S, would consist of marrying B(0) to G(s,), B(1) to
G(81); ..., B(n) to G(s,,); that marrying, in addition, B(n+ 1) to G(z) would
be a solution to the marriage problem of 8, ,,, and that this solution
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extends to a solution of S,, for every m > »’. To say that this solution
extends to a solution of §,, for every m > n is to say that ‘for each such m
there is a sequence of m+ 1 numbers sy, 8y, ..., 8,,2, by 0 Eniss vy by SUCh
that a solution to the marriage problem of §,, would consist of marrying
B(0) to G(sy), ..., B(a) to G(s,,), B(n+1) to G(z), B(n+2) to G(¢t,,,5), ..., B(m)
to G(t,,)’. If we write this predicate out using the formalism of number
theory we obtain the following expression:

(V9)scm s B(B(), G((3),) A (vi)i<lhs(vj);i<i((s)i # (8);;)
AV 1)icm s ((8); # 2) A B(B(n +1), G(2))
Alhs=n+1

A(Vm)[m >1lhs—> (Ft)(h ¢t =mna

(V )icms ((8); = D) A s = 2A

(V )i (B(B(), G((2):)) A

(Vi< (Y J)j<s ((B)s # (@)3))]-

Using standard procedures for moving quantifiers to the front (see
[1], p. 185, [9], pp. 85-90, or [14], §14.3), the above can be written as
(V'm)(3t) R(m,t,s,z,n) which has one quantifier too many for our purposes.
However, we have not yet used the assumption that S is highly recursive.
This assumption enables us to give a recursive bound for the existential
quantifier; that is, the fact that the society is highly recursive enables us
to decide how long to search for a solution to the marriage problem for
8,, which extends the given one for 8, , before we give up, and it tells us
that if we give up the search without finding such a solution, we do so
because there is none.

Specifically, given m > lh s we need find, for each 4+ < m, only the value
of A(¢), then find, for each ¢ < m, the A(7) girls whom B(z) knows, for then
we shall have enough information on hand to determine whether there is a
solution to the marriage problem of S, extending the given solution
of Sn+1'

Define ¢(i) = ut (X, Xp(B(#), G(j)) = h(7)). Since h is recursive, so is g
and every girl that B(¢) knows is among G(0), G(1), ..., G(g(¢)). Hence (¢),
will be at most g(7) for each 7. Hence we may assume that ¢ is at most
g(m). Thus the predicate above can be written in the form

(V m) (3 t)l<ﬁ(m) R(m’ t: 8,2, 7’&)
which in turn is of the form (Vm)@(m,s,z,n) where @ is a recursive

predicate.
We now define the function f by a course-of-values recursion:

f(n) = p2[(¥ m)Q(m,f(n),z,n ~ 1)].
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It is clear that this function f is the solution referred to earlier. It is also
clear that f is recursive in a predicate whose degree is less than or equal to
0’. Hence the degree of fis < 0.

We can strengthen Theorem 5 considerably, but more powerful
recursion-theoretic techniques are necessary ; we have left both statement
and proof for later (Theorem 11).

We now return to a consideration of the other condition imposed on a
recursive society S in Theorem 2—namely that S have a unique solution
to its marriage problem. As we observed earlier, the existence of a unique
solution to the marriage problem of the recursive society § is not sufficient
to guarantee that S be recursively solvable. We wish to discuss at this
point what can be said about such a society. The next two theorems show
that there is a recursive society with a unique solution and that solution
has degree of unsolvability d if and only if d < 0'.

TuroREM 6. Let S be a recursive society which has a unique solution to
its marriage problem. Let d be the degree of unsolvability of that solution.
Thend < 0.

Proof. We remind the reader of the proof of Theorem 2, where, with
the additional hypothesis that S be highly recursive, we proved that the
unique solution must be recursive. It is easy to see that what was actually
proved was that the unique solution is recursive in the function % which
there was recursive. Thus we need to show only that in general the
function A is recursive in 0'.

Define g(i) = (ut) (VJ) (§ > t > ~R(B(:),3(4)))). Then g is recursive
in 0’. Also

hi) = 2 Xg(B(i), G(4))
Jj<gti)
so that  is recursive in g. Hence %, and therefore the unique solution, is
recursive in 0'.

CoroLLARY. Let S be a recursive society which has a finite number of
solutions to its marriage problem. Then each of its solutions is recursive
in 0.

Proof. We proceed as in the proof of the corollary to Theorem 2 and
instead of applying Theorem 2 apply Theorem 6.

TaroreM 7. If d <0, then there is a recursive society which has a
unique solution and that solution has degree of unsolvability d.

Proof. Let D be a set whose degree of unsolvability is d; then since
d < 0’ there is a number ¢ such that X, = X,
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We define simultaneously the society S and three one-to-one recursive
functions 7, sy, and s;, where the ranges of s, and s, are disjoint; at the
end of stage n, r(3), s,(7), and s,(¢) will be defined for all ¢ < n.

Intuitively the construction will guarantee that B(r(e)) will marry
G(so(e)) if and only if e € D and that B(r(e)) will marry G(s,(e)) if and only
if e ¢ D. This will imply that the unique solution f has degree d.

We assume as part of the inductive hypotheses that for each ¢ < n
there is a natural number % such that the community O,(r(e)) contains
k boys By, B,,...,B; and k girls G4, G,,...,G, and that, for some ¢ < 2,
B; knows @G, if and only if they are joined by a straight line segment in
Fig. 1’ below.

.B]_ Bz JHJ,__] B (r(e)) ’a'“. 11 B,.m /_B‘:
6, &, Gpt GGE) G0l Gpoa G
where 1 < p < k&
Fic. 0’
B, By By Bp-r Br(e)) By By A
Gy G, (e Gsyle)) G(sy(e)) Gyt L Gr
where 1l < p <k
Fie. 1’

Note that if C,(r(e)) is stable then, in any solution to the marriage
problem of 8, B(r(e)) marries G(sy(e)) if and only if C,(r(e)) looks like
Fig. 0’, and B(r(e)) marries G(s,(e)) if and only if C,(r(e)) looks like Fig. 1'.

Define a recursive function

1 if pKie) ~

X(t,0) = pel(e) = 1,

0 otherwise.
Thus X(¢,e) is (approximately) the value of pX(e) after ¢ steps—or, since
@K is the characteristic function of the set D of degree d, X(t,e) = 1 if and
only if the number ¢ appears to be in the set D after ¢ steps. As ¢ increases,
for each fixed e, the number ¢ may appear alternately to be in D and to
be in the complement of D, but eventually we will reach a point (although
we have no way of knowing whether we have reached that point) where
the appearance becomes the reality. We have arranged matters below so
that if e eventually ends up in D, then C,(r(e)) will become stable in the
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form of Fig. 0’, so that B(r(e)) must marry G(sy(e))—and if e eventually
ends up in the complement of D, then C,(r(e)) will become stable in the
form of Fig. 1’, so that B(r(e)) must marry G(s,(e)).

Stage n. Let r(n—1) = a, sy(n—1) = b, s;(n—1) = b+ 1; introduce B(a)
to G(b) and G(b + 1) and introduce B(a+1) to G(b+1).

Suppose that n = 2¢.q, where ¢ is odd. Then if X(n,e) =1 we want
C,+1(7(e)) to look like Fig. 0’ whereas if X(n,e) = 0 we want C;4(r(e)) to
look like Fig. 1’. Hence if X(n, ¢) = 1 and C,(r(e)) looks like Fig. 0’ or if
X(n,e) = 0 and C,(r(e)) looks like Fig. 1’ we proceed directly to the next
stage. If, however, X(n,e) = 1 and C,(r(e)) looks like Fig. 1’, then we
introduce B; to G(b+2) and G, to B(a+2). Similarly, if X(n,e) = 0 and
C,(r(e)) looks like Fig. 0’, then we introduce G; to B(a+2) and By to
G(b+2).

This completes the description of the construction. We must now show
that

(i) S is recursive,

(ii) S has a unique solution f,

(iii) f has degree d.

As to (i), we proceed as in Theorem 1.

As to (ii), it suffices to show that for each n, C,(r(e)) is stable for
sufficiently large n, since each C,(r(e)) has a unique solution to its marriage
problem. But X(t,e) = Xp(e) for ¢ beyond some number #(e), so that
Cr(e)) = Coin(r(e)) for all ¢ > ty(e).

As to (iii), it is clear that D is recursive in f since Xp(e) = 1 if and only if
f marries B(r(e)) to G(se(e)). On the other hand, given B(j), we can
effectively determine which B(r(e)) is in his community and which two
girls he knows. Then using our knowledge of whether e € D or not we can
determine whom B(r(e)) will marry. Using that information, we can
determine effectively whom B(j) will marry. Hence f is recursive in D.
Hence f has degree d.

Theorems 5 and 6 state that if a solvable recursive society either is
highly recursive or has a unique solution then that solution is recursive
in 0. A reasonable conjecture would be that any solvable recursive
society has a solution recursive in 0’. This conjecture is false.

TurorEM 8. There exists a recursive society which is solvable but which
has no solution recursive tn 0’.

Proof. We define simultaneously the society S and three one-to-one
recursive functions r, sy, and s,; at the end of stage n, r(¢), s4(¢), and s,(¢)
will be defined for all ¢ < n.
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Intuitively the construction will guarantee that if pX(r(e)) is defined
then B(r(e)) cannot marry G(pX (r(e))) and thus that X cannot be a solution
to the marriage problem of S.

We include as part of the inductive hypothesis the same assumptions
made about the communities C,(e) as were made in the proof of
Theorem 7.

Stage n. Let r(n—1)=a, sy(n—1)=b, s,(n—1)=b+1; introduce
B(a) to G(b) and G(b+1) and introduce B(a+1) to G(b+1).

Suppose that n = 2°.q, where ¢ is odd. Then if pX:n(r(e)) is defined and
equals s,(e) we want O, ,(r(e)) to look like Fig. (1 —¢)’ of Theorem 7. Hence,
if o (r(e)) = so(¢) and C,(r(e)) looks like Fig. 0’ then we introduce @,
to B(a+2) and By, to G(b+2). Similarly if pX7(r(e)) = s,(e) and C,(r(e))
looks like Fig. 1’ we introduce B, to G(b+2) and G}, to B(a +2). Otherwise
we proceed directly to the next stage.

This completes the description of the construction. We must now show
that

(i) S is recursive,
(ii) 8 is solvable,

(iii) § has no solution recursive in 0’.

As to (i), we proceed as in Theorem 1.

As to (ii), we note that each community of S either looks like Fig. 0’ or 1’
or, as a result of the eternal oscillation of pX"(r(e)), looks like Fig. 5. Thus

o B (r(e)) o @
9 G(sole)) G (s,(e)) Q
Fi1c. 5

each community of § has a solution to its marriage problem, and therefore
so does S.

As to (iii), if f is recursive in 0’ then f = X for some e. Hence for n
beyond some number n,, f(r(e)) = pX-7(r(e)). Hence Cpyia(e) is stable and
B(r(e)) cannot marry G(pK(r(e))). Therefore f is not a solution to the
marriage problem of S.

In spite of the result of Theorem 8, it is possible to find a degree such
that every solvable recursive society has a solution recursive in that
degree. In fact, this was essentially done in the proof of Theorem 5.

THEOREM 9. Let S be a solvable recursive society. Then S has a solution
which is recursive in 0",
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Proof. The proof of Theorem 5 shows that if S is any solvable recursive
society then S has a solution which is recursive in the predicate
(Vm)(3t) B(m,t,s,2,n), where R is recursive. (The hypothesis that S be
highly recursive was then used to eliminate one of the quantifiers.) Hence
there is a solution to the marriage problem of § which is recursive in 0”.

Theorems 8 and 9 leave between them a wide gap. This gap is partially
closed by the following theorem which is patterned on the basis theorem
of Soare and Jockusch ([7]). In a similar way the theorem after that
partially closes the gap between Theorems 3 and 5.

THEOREM 10. If the recursive soctety S is solvable then it has a solution
whose degree d satisfies d’ < 0”.

Proof. This improvement of Theorem 9 is essentially the device used
by Soare and Jockusch ([7]) to improve the basis theorems of Kreisel
and Shoenfield ([15]).

In the proof we try to find a solution f recursive in 0” so that the
questions ‘Is ¢/(e) defined ¢’ of degree d’ can be answered recursively in 0”.

We shall proceed as in the proof of Theorem 5 to find a sequence of
partial functions {f, |n e N} such that each f, is a solution to the marriage
problem of §,. Simultaneously we shall define a strictly increasing
function r such that ¢/(e) is undefined if and only if ¢ is in the range of r,
where f = U, .xfs. Both fand » will be recursive in 0” and so, since the
fact that r is a strictly increasing function recursive in 0” implies that its
range is also recursive in 0" the questions ‘Is ¢/(e) defined ?’ can be
answered recursively in 0",

We shall use the terminology developed in the proof of Theorem 5.
However, we shall convert a function f, € 7}, into a number ¢ such that
(t); = fo(¢) for each ¢ < n. We say that a ¢t € T is acceptable for e if gi(e) is
undefined. Thus if ¢ is considered as an approximation to the solution f
then # is acceptable for e approximately if ¢](e) is to be undefined.

We assume as part of the inductive hypothesis that at stage n we have
defined f, € 7, and r(¢) for all 4 < n. We assume further that f, has
infinitely many extensions in 7' which are acceptable for every r(:),
where ¢ < n.

Now define r(n + 1) to be the least ¢ > r(n) such that there are infinitely
many extensions of f,, which are acceptable for e as well as for all r(¢) for
© < . (Such an e always exists since there are infinitely many e such that
¢4(e) is undefined for every g.) Let f,,; be an extension of f,, f,, .1 € Tp.1,
such that f,.; has infinitely many extensions which are acceptable for
each 7(i) for ¢ < n+41, and such that f,,(n+1) is minimal. Here again
we are using Konig’s lemma.

5388.3.25 w
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It is clear, simply from the fact that f, € 7, and f,,, extends f, for
every m, that J, .yf, is indeed a solution to the marriage problem of S.
We must show that both f and r are recursive in 0” in order to conclude
that the degree d of f satisfies d’ < 0.

Define the predicate N(m,t,s,¢) to mean that ¢ is a proper extension
of s which codes a solution to the marriage problem of 8,, and such that
¢'(e) is undefined. This predicate is recursive since it can be written
formally as

Ihs <malht =mA (Vi) () = () A
(Y 0)sam [B(B(2), G((£))) A (Y )i (B # ()1)] A
¢L(e) is undefined.

(Note that to say that ¢i(e) is defined is to say that it is defined in at most
lh ¢ steps, so that the answer to the question ‘Is ¢i(e) defined !’ can be
recursively obtained.)

Using N we define the predicate M(m,t,s,e,q) to mean that in addition
t is acceptable for each (¢);, where ¢ < lh ¢. Thus M(m,¢,s, e, q) is recursive
since it can be defined formally by

N(m: t’ 8, e) A (V 'i)i<lth(m’ t’ S, (q)z)

Define the predicate P(s,e,q) to mean that for every m > lh s there is
an extension of s which is a solution to the marriage problem of §,, and
which is acceptable to ¢ and to all (¢); for ¢ <1lh q. Formally, P(s,e,q)
is the predicate

(Vm)(m >lh s > () M(m,t,s,e,q)).
Since the predicate P can be written in the form (Vm) (3¢} F(m,t,s,e,q),
where F is recursive, P is itself recursive in 0”.
We now define simultaneously by induction two functions as follows:

r(n) = pe[P(f(n),e,7(n)) Ae > (7(n)),.1],
f(n) = pz [P(f(n)'pnz’ r(n), #(n))].
Thus r(n) is the smallest ¢ such that for every m > n there is an extension
t of f,_, which is a solution to the marriage problem of B,,_, and which is
acceptable for e and for all 7(¢) for 7 < n. As noted above, we know that
such an e must exist. Also f(n) is defined here as the least z such that by
extending the solution f,_; to a solution for §, by marrying B(n) to
G(f(n)) we still have infinitely many extensions which are acceptable
for all 7(s) where ¢ < .
Hence the f and r defined here are formally and precisely the same as
the f and r defined in the construction above. But f and r here are both
recursive in 0",
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To see that the questions ‘Is ¢l(e) defined?’ can indeed be answered
recursively in 0", we note that, first of all, if e is in the range of » then
clearly ¢lr(e) is undefined for each n so that ¢/(e) is undefined. Conversely
if e;is not in the range of r, say r(n—1) < ¢, < 7(n) (recall that 7 is strictly
increasing) then ~ P(f(n),e,,#(n)) so that

(Am) (m > nA(YE)[(V0)icn N(m, 8, (1), (r);) > ~ N(m,1,f(n), e)]).

This says that once f,, has been defined, as long as this is done in
accordance with our plan, then at that point ¢/=(e) will be defined, so that
@l(e) will be defined.

Hence ¢](e) is defined if and only if e is not in the range of r if and only
if (V4)jco(r(?) # e). Thus the question of whether ¢f(e) is defined is
recursive in r and hence in 0”. Thus the degree d of f satisfies d’ < 0”.

THEOREM 11. Let S be a highly recursive society which is solvable. Then
8 has a solution whose degree d satisfies d’ = 0'.

Proof. We use the proof above, observing as at the end of the proof of
Theorem 5, that the fact that S is highly recursive enables us to conclude
that the predicate P(s,e,q) defined above as (Vm)(3t) F(m,t,s,e,q) can
be written as (Vm) (3t),j(m) F(m,t,s,¢e,q), where g is recursive, so that P
is recursive in 0'. Since the functions f and r are recursive in P, d’ < 0'. Of
course this implies that d’ = ¢,

3. We remarked at the beginning of the preceding section that it is
possible to have a solution to the marriage problem for a certain society
in which some of the girls remain unmarried; this is possible because we
demanded only that in a solution every boy be married. In this section
we consider the symmetric version of the marriage problem.

If B is a partial society and f is a function whose domain is
{n| B(n) is in the field of R}, then f is called a solution to the symmetric
marriage problem of R if f is one-to-one, if f is onto {m|G(m) is in the field
of R}, and if B(n) knows G(f(n)) for every n in the domain of f. The partial
society R is said to be symmetrically solvable if there is a solution to the
symmetric marriage problem of R.

A further generalization of the theorem of Philip Hall is the statement
that a partial society is symmetrically solvable if and only if every n boys
know among them at least n girls and every = girls know among them at
least » boys. (See [11], p. 536.)

It is evident that a partial society is symmetrically solvable if and only
if each of its communities is symmetrically solvable; it has a unique sym-
metric solution if and only if each of its communities has a unique sym-
metric solution,
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A society S is recursively symmetrically solvable if there is a recursive
function f which is a solution to the symmetric marriage problem of S.
We proceed to give the symmetric versions of Theorems 1-11 above.

TaEOREM 1*. There is a recursive society S which is symmetrically
solvable but is not recursively symmetrically solvable.

Proof. The society constructed in the proof of Theorem 1 is
symmetrically solvable.

A recursive society 8 is said to be highly* recursive if there is a recursive
function A* such that, for each ¢, the number of people whom ¢ knows is
exactly A*(¢).

TaEOREM 2*. If S is a highly* recursive society and the symmelric
marriage problem for S has a unique solution, then that solution is recursive.

Proof. The proof is a symmetrized version of the proof of Theorem 2.

We shall describe an algorithm which the matchmaker can use to find
the symmetric solution to the symmetric marriage problem of 8. The fact
that the algorithm works is a consequence of the fact that

(*) if R is a partial society which has a unique solution to its
symmetric marriage problem then some person in the society
must know exactly one person of the opposite sex.

This statement is a consequence of the lemma which is proved below.

The matchmaker proceeds as in the proof of Theorem 2 to compute
B*(0), k*(1), ... until he finds a person who knows exactly one person of
the opposite sex, finds that person’s mate, deletes the couple from the
society, and starts the procedure over with the partial society thus
obtained. It is then clear that if he repeats this procedure for ever, at
each stage he pairs off a couple who in the unique symmetric solution must
be married, at each stage he is able to continue because of (*), and, using
(*) just as in the proof of Theorem 2, every person is paired off at some
time in the course of the algorithm.

We mention, for emphasis, that at each point in the proof of Theorem 2
where boys are treated asymmetrically, a symmetric version of that
fragment of the argument can and should be substituted and the result
will be a proof of Theorem 2*.

CoROLLARY*: Let S be a highly* recursive society whose symmelric
marriage problem has a finite number of solutions. Then these solutions are
all recursive.

The lemma on which the Theorem 2% above rests is
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Lemma*, Let R be a partial society in which each person knows at least
two people of the opposite sex. If R is symmetrically solvable, then the
symmetric marriage problem of R has at least two solutions.

Proof. Let f be a solution to the symmetric marriage problem of R.
Let B(i,) be any boy in R and let f(3,) = j, so that the solution f marries
B(ig) to G(j,). Let G(j;) be another girl that B(4,) knows and let B(i_,) be
another boy that G(j,) knows. Let B(i;) be the boy whom f marries to
@(jy)- If B(s,) is B(i_,) then we can define a new symmetric solution f*
which marries B(i,) to G(j,) and B(s,) to G(j;) and each other boy B(s)
to G(f(i)). So we may assume that B(i,) is different from B(i_,). Let
G(j_1) be the girl whom f marries to B(i_,); then G(j_,) is different from
both G(j,) and G(j;). We are now faced with the situation of Fig. 6.

B(i-,) B(i) B(i)
/ 5 J

G(j-) @(5) Gy
Fia. 6

where a line between two people indicates that they know each other and

an f on a line indicates that the couple is married in the solution f.
Assume now that we have continued the definition and found 2n+1

distinet boys and 2n+ 1 distinet girls so that we have obtained Fig. 7.

Bli_y) Bli_ar) By Bliy) B(i,) Bliy)
J J TORLIE 7 i/ iy see

Gl4_y) G(j-n+1)  G(5) G(Jo) G(51) G(gn)
F1a. 7

Let G(jn.1) be another girl whom B(3,,) knows. If G(j,.,,) is G(j,) for some
t, —n <{<mn, then we can define a new symmetric solution f* which
marries B(i,) to G(j), B(,) to G(i,.,) for £ < r < n, and each other boy
B(¢) to G(f(¢)). So we may assume that G(j,,,) is distinet from the 2n+ 1
girls above. Let B(i,,;) be the boy to whom f marries G(j, +1). Let
B(i_,_,) be another boy whom G(j_,) knows. If he is B(i,) for some ¢,
—n <t < n+1, then again we can define a symmetric solution f*. So we
may assume that B(i_,_;) is distinct from the 2n+ 2 boys already deter-
mined. Let G(j_,_,) be the girl to whom f marries B(i_, ,). We have
thus obtained the diagram above, with n + 1 replacing n.
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Thus, proceeding inductively, either we find a new symmetric solution
or we find a set {B(3,)|¢ € Z} of boys and a set {G(j,)|t € Z} (here Z is the
set of integers) such that, for each ¢, B(3;) knows G(j,) and G(j,,) and is
married to G(j,) in the solution f. We can now define a new symmetric
solution f* by stipulating that, for each ¢, f* marries B(i)) to G(j;;,) and
each other boy B(i) to G(f()). We have thus obtained a second symmetric
solution to the marriage problem of S.

Tt is reasonable to ask whether Theorem 2* would be true assuming
that S was highly recursive (but not highly* recursive). It is perhaps too
much to expect that the conclusion can be symmetrized without that
happening to the hypotheses as well. This is borne out by the following
theorem (which is not numbered so as not to destroy the parallel number-
ings of the previous section and this one).

TaEOREM *. There is a highly recursive society which has a unique
symmetric solution but is not recursively symmetrically solvable. In fact for
each degree d, such that 0 < d < 0’ ther is a highly recursive society which has
a unique symmetric solution and that solution has degree d.

Proof. The construction is the same as that in the proof of Theorem 7,
except that a small modification is needed. As a result of this modification,
the society no longer has a unique solution to its marriage problem;
however, it still has a unique symmetric solution. This solution has degree
d and, furthermore, every boy in the society knows exactly two girls, so
that the society is trivially highly recursive.

The modification can be described as follows. If at a certain stage n we
are dealing with the community C,(r(e)), if that community looks like
Fig. 0/, and if there is no reason to alter the community so that it looks
like Fig. 1’, then at stage n we introduce By, to a new girl and introduce her
to a new boy; similarly, if the community looks like Fig. 1, and if there is
no reason to alter it so that it looks like Fig. 0, then at stage n we introduce
B, to a new girl and introduce her to a new boy.

It is easy to verify that the society which results has all the required
properties.

We proceed with our analysis of the symmetric versions of Theorems
1-11.

We ask, analogously to the preceding section, whether the assumption
of highly* recursive is sufficient to guarantee that a symmetrically
solvable society be recursively symmetrically solvable. Again the answer
is ‘No’, and in fact the counter-example constructed in Theorem 3, being
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a 2-society, is highly* recursive. Thus the statements below need no
further comment.

THEOREM 3*. There exisls a recursive 2-society S which is symmetrically
solvable but not recursively symmetrically solvable.

TuEOREM 4%, There is a decidable society S which is symmetrically
solvable but is not recursively symmetrically solvable.

Having shown that even a highly* recursive society which is symmetri-
cally solvable need not be recursively solvable, it is natural to ask how far
from recursive its symmetric solutions need be.

TuroREM 5*. Let S be a highly* recursive society which s symmetrically
solvable. Then S has a symmetric solution whose degree does not exceed 0.

Proof. The proof will be a symmetric version of the proof of Theorem 5.
For each n let S} be the partial society

{B(t)|i < n}u{@@)|¢ < n}uiyn{G(j)lB(i) knows G(j)}
Uign{B(j)lB(j) knows G(3)}.

By assumption each S} has a solution to its marriage problem in which
each B(i) and G(i) are married, for each ¢ < ». From each such solution
we can extract an ordered pair of one-to-one functions {f,g> called a
semi-solution for S} whose domains are both {i[¢ < n} with the additional
properties that for each ¢ < », B(i) knows G(f(:)) and G(z) knows B(g(2)),
and that f and g are compatible in the sense that if f(3) < » for some i then
g(f (1)) = 7 and if g(i) < n for some ¢ then f(g(s)) = 5. Thus if we let T* be
the set of all such ordered pairs of functions, that is, all semi-solutions
for Sy, the hypotheses of the theorem imply that T:# 0. Let
T* = U, n Ty and define a partial ordering on 7* by (f,g> < {flyg'>if
S’ extends f and ¢’ extends g. With this defiriition 7'* is a tree which
branches finitely and has an infinite number of nodes.

As in the proof of Theorem 5, we now apply recursion-theoretic
techniques to the proof of Konig’s lemma. That is, we define a sequence
({fs #n> € T |m € N) 50 that if m < n then {f,, 4> < [}y 0> Assuming
that {f,,¢,> has been defined and satisfies the suitable inductive hypo-
theses, we define {f,,1,¢,.1> to be the element of 7% 11 which extends
{Ja:9u and which yields the smallest value for f(n+ 1) and, in case of a tie,
the smallest value for g(n + 1) also.

Let f be the unique extension of all the f, and let g be the unique
extension of all the g,,. It is clear from the construction that a symmetric
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solution to the marriage problem of the society consists in marrying each
boy B(z) to G(f (%)), or equivalently each girl G(:) to B(g(:)).

We show now that this solution is in fact recursive in 0.

Consider the following property of the numbers z, w, s, {, and n: ‘that s
codes a sequence of n+1 distinet numbers s,,s;,...,8,; that ¢ codes a
sequence of n+ 1 distinet numbers #,i,,...,%,; that for each ¢ < n, B(z)
knows G(s;) and G(:) knows B(%,); if s; < n then ¢, =4 and if #; < n then
s, =1 (so that {s,t) can be thought of as a semi- solutlon for 8¥); that
marrying, in addition, B(z) to G(w) would be a semi-solution for S}, and
that this semi-solution extends to a semi-solution for 83}, for every m > n’.

If we write this predicate out using the formalism of number theory we
obtain the following expression:

lh s = n+ 1A (Y 8)cm s (B(B(E), G((3):))) A
lh ¢ = n+ 1A(V 9)cm R(B((2)s), G(0)) A
(V )scins (VDi<i ((8)s # ()54 (8); # (E))) A
(Vi)ictns ((8)s S 1 = (o), = 1. A () S 1 = (8)y, = ) A
(V1)1<m s ((8); # 2A(E); # W) A
(Vi)icms (8} =0+l >w=1.A.(f); =n+1—>2=10)A
R(B(n+1),G(2)) A R(G(n +1), B(w)) A
(Vm)(m >1lhs— (3s)(3t')(h s =mna
Th ¢ = mA (Y )emns (8 = (8)sA (0 = ¢)) A
(S’)n+1 =2ZA (t’)n+1 = WA
(¥ )sm (R(BUE), G )) AR(B((E),), G6)) A
(V) sm (V)i ((8")s # (8")yA () # (8)5) A
(V)iem (8 < m > ()i, = 1. A(F); <m0 = (), = 1))

As in the proof of Theorem 5, this expression can be written as
(vm)(3s) (At') R¥(m,s',t',s,t,2,w,n), where R* is recursive. As before
we now apply the assumption that the society is highly* recursive to get
recursive bounds for the existential quantifiers. Specifically, if m >1h s
we need to find, for each ¢ < 2m, only the value of A*(3), then find, for each
i < 2m, the h*(i) people that the person ¢ knows, for then we shall have
enough information on hand to determine whether there is a semi-solution
for 8* extending the given semi-solution for S¥,,.

Define k(i) = pt(T; Xp(B(E), G(4)) = h*(2i)). Since h* is recursive so
is h,, and every girl that B(i) knows is among G(0), G(1), ..., G(hy()).
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Similarly, define hy(¢) = ut(X;, Xg(B(j), G(¢)) = h*(2¢+1)). Then b, is
recursive and every boy that G(7) knows is among B(0), B(1), ..., B(hy(3)).
Hence (s'); will be at most %,(¢) for each ¢ and (¢'), will be at most ho(3) for
each . Hence we may assume that s’ is at most 4,(m) and that ¢’ is at most
ho(m). Thus the predicate above can be written in the form

(V m) (EI 8l)s’<ﬂl(m) (3 t,)t’<ﬁa(m) R*(m’ S,’ t,’ 8, t: 2, W, n)’
which is in turn of the form
(V m) Q*(m’ S’ t? z’ w’ n)’
where Q* is recursive.

We now define two functions f and g simultaneously by a course of
values recursion:

f () = p2l(3W)ycnym (VM) Q*(m, f(n), §(n), 2, w,n = 1)],
g(n) = Hw[(vm)Q*(m,f n),§(n),f(n), w,n = 1)].
It is clear that these functions f and g are the ones referred to earlier. It

is also clear that f is recursive in a predicate which is recursive in 0'.
Hence the degree of fis < 0'.

Theorem 5* can be considerably strengthened, but again more powerful
recursion-theoretic techniques are necessary; we leave both the statement
and the proof for later (Theorem 11%).

We now return to the study of recursive societies which have a unique
solution to their symmetric marriage problem. We note that the society
constructed for Theorem 1* is an example of such a society, so we know
immediately that there being a unique symmetric solution does not
guarantee that that solution is recursive. We wish to discuss here what
more can be said of such a society. The next two theorems, corresponding
to Theorems 6 and 7 above, show that there is a recursive society with a
unique symmetric solution and that solution has degree d if and only if
d<0.

THEOREM 6%, Let S be a recursive society which has a unique solution to
its symmetric marriage problem. Let d be the degree of that solution. Then
d<o.

Proof. We remind the reader of the proof of Theorem 2*, where, with
the additional hypothesis that S be highly* recursive, we proved that the
unique symmetric solution must be recursive. It is easy to see that what
was actually proved was that the unique solution is recursive in the
function A*, which there was recursive. Thus we need to show only that
in general the function A* is recursive in 0'.



652 ALFRED B. MANASTER AND JOSEPH G. ROSENSTEIN

(as by hair-style) but rather can be done in degree d; in that case one
obtains results which involve the degree d wherever the degree 0 is
involved above.

5. In this paper we have focused on finding a solution, of as low a
degree of unsolvability as possible, to the marriage problem of every
solvable recursive society. In the original manuscript we raised the
following two questions. Is it possible to strengthen Theorem 8 to
complement Theorem 10 more fully by proving that if d’ = 0” then there
is a solvable recursive society with no solution recursive in d? Is it
possible to strengthen Theorem 3 to complement Theorem 11 more fully
by proving that if d’ = 0’ then there is a highly recursive solvable society
with no solution recursive in d? Carl Jockusch has observed that both
questions have negative answers.

Jockusch also made the following interesting conjectures. We appreciate
his sharing them with us and his permission to report them here. If
correct, the conjectures would establish the equivalence of many of the
above results with known results concerning paths through recursive
trees and retraceable sets. For definitions and further references, see
[6] and [14].

Congecture 1. If T is a recursive finitely branching tree, then
there is a recursive society § and a degree-preserving one-to-one
correspondence between the set of infinite paths through 7' and
the set of solutions to the marriage problem of §.

Conjecture 2. If T' is a recursively bounded recursive tree, then
there is a highly recursive society S and a degree-preserving
one-to-one correspondence between the set of infinite paths
through 7' and the set of solutions to the marriage problem of 8.

It is an immediate observation that if § is a recursive society then
there is in fact a recursive finitely branching tree 7' and a degree-
preserving one-to-one correspondence between the set of infinite paths
through 7" and the set of all solutions to the marriage problem of S. For
example, we can let 7' be the set of sequence-numbers s such that a
solution to the marriage problem of §}; () (cf. the proof of Theorem 5)
would consist of marrying B(0) to G(s,), B(1) to G(sy), ..., B(h (s)—1) to
G(S1h ()-1)- (The reader is cautioned that the enumeration of finite
sequences given in §1 is inappropriate here and that a slightly different,
but still fully effective, encoding is implicitly being used here and
throughout the remainder of this section.) If S is highly recursive, then 7',
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as defined above, is recursively bounded, so that if § is a highly recursive
society then there is a recursively bounded tree T' such that’S and 7' are
related as in Conjecture 2. These observations make it possible for both
conjectures to be correct.

Similarly, if S is a recursive society, then there is a recursive finitely
branching tree 7' and a degree-preserving one-to-one correspondence
between the set of infinite paths through 7' and the set of solutions to the
symmetric marriage problem of S. For example, we can let 7' be the set
of sequence-numbers encoding sequences ({8y, £o>, {81,81); ..., {8y, ,) such
that {(s,t) is a semi-solution for 8¥ in the sense of Theorem 5%. (Here s
codes <3, ...,s,> and ¢ codes {fy,...,t,>.) Again, if § is highly recursive,
then 7', as defined above, is recursively bounded. These observations make
it possible for the ‘symmetric versions’ of the conjectures to be correct.

We have been unable either to establish or to refute the conjectures.
However, the three of us have verified that the ‘symmetric versions’ of
the conjectures are correct.

THEOREM. If T is an infinite recursive finitely branching tree, then there
ts a recursive soctety S such that there is a degree-preserving one-to-one
correspondence between the set of imfinite paths through T and the set of
solutions to the symmetric marriage problem of S.

Proof. Since the nodes of 7' form an infinite recursive set, we can
recursively rename the set of boys using the sequence numbers in the
tree above the root as nicknames. Similarly, we can rename the set of
girls using this time all of the sequence numbers in 7" as nicknames. Each
boy is to know only the girl whose nickname is identical with his and the
girl whose nickname is the node immediately below his nickname. The
boy with nickname s is denoted Js and the girl with nickname s is denoted
Qs. For an example see Fig. 8. The degree-preserving one-to-one
correspondence between solutions f to the symmetric marriage problem
of § and infinite paths P through 7' is given by letting the path P
correspond to the solution fif P = {s|f(ds) # @stu{{D}.

If the recursive tree 7' in the above proof is assumed to be recursively
bounded, then the society S defined above would be highly recursive.
Thus, we have also proved that the symmetric version of Conjecture 2 is
correct.

The conjectures have many consequences for the possible sets of
solutions to the marriage problem of recursive societies. For example, if
1 < n < Ny, then there is a recursive society with solutions in exactly n
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gument; its proof will appear elsewhere.
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