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AssTRACT. In an earlier paper we showed that there is a recursive
society, in which each person knows exactly two other people,
whose marriage problem is solvable but not recursively solvable.
We generalize this result, using a different construction, to the case
where each person knows exactly & other people. From this we
deduce that for each k=2 there is a recursive 2(k—1)-regular graph,
whose chromatic number is k£ but which is not recursively k-
chromatic.

1. Graphs, societies, and algorithms. Following Berge [1] a set S of
unordered pairs of distinct elements of a set P determines a graph I'=
(P, S). The elements of P are called points or vertices of T'; the elements
of S are called arcs of T'. It is not assumed that P or S is finite. Points x
and y are said to be adjacent if {x, y} is an arc. I is k-chromatic if the
points of I can be painted with k colors in such a way that no two adjacent
points are of the same color. The chromatic number of 1" is the smallest
number k such that T is k-chromatic. I is k-regular if every point of I'
is adjacent to exactly k points. I' is called simple (or bipartite) if there
exist disjoint sets B and G such that P=BUG and if wherever {x,y}esS
then x € B and y € G or y € B and x € G. Two distinct arcs are said to be
adjacent if they have a point in common. A matching of a simple graph
(B, G, S) is a set W of arcs no two of which are adjacent. Let W be a
matching, By-={b e B| for some g, {b, g} € W},andGp={g € G| for some
b, {b,g} € W}; W is then said to be a matching of By onto Gy, or a
matching of By-into G.

We now recall the more colorful, anthropomorphic terminology of
Halmos and Vaughan [3]. Let X=(B, G, S) be a simple graph. We call
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2 a society, B the set of boys, and G the set of girls. If b and g are adjacent
in the graph X we say that b and g are acquainted in the society X. We
call the society X a k-society if as a graph it is k-regular, so that in a k-
society each person knows exactly k people of the opposite sex. The society
2 is said to have a solvable marriage problem if there is a matching of
Binto G, for we can think of the matching as providing, in a monogamous
way, a mate for each boy from among the girls he knows. Similarly, X is
said to have a symmetric solution to its marriage problem if there is a match-
ing of B onto G

We also associate with the society X another graph I';y as follows. The
points of I'; are the arcs of X and the arcs of I'y are the unordered pairs
of adjacent arcs of . If X is a k-society then 'y is a 2(k— 1)-regular graph.

We use three combinatorial lemmas which we state here without proof.

Lemma 1. If X is a k-society, then there is a symmetric solution to its
marriage problem.

LEMMA 2. If X is a k-society, the chromatic number of Ty is k.

LemMmA 3. Let X be a k-society. The set of points of T'y possessing a
common color in a k-coloring of Ty is a matching of B onto G in X. Thus
such a set of points is a solution to the symmetric marriage problem of Z.

In the finite case, Lemmas 1 and 2 are just restatements of results due
to Konig and P. Hall appearing in Berge [1, pp. 92-95]. To prove these
lemmas in the infinite case, one can, for example, use O. Ore’s extension
of the Schroeder-Bernstein theorem (Theorem 1.3.4 in Mirsky [4]).
Lemma 3 is easily verified directly.

Following Rogers [5] a function which is computable by an algorithm
or an effective procedure is called a partial recursive function. The domain
of a partial recursive function is assumed to be a subset of N™ for a
fixed m (N is the set of natural numbers) and its range is assumed to be a
subset of N. If its domain happens to be all of N™ the partial recursive
function 6 is called a (general) recursive function. If x is in the domain of 6
we say that 6(x) is defined; otherwise we say that 0(x) is undefined. A set
is said to be recursive if its characteristic function is a recursive function.

The collection of all finite sets of instructions, or algorithms, formulated
in a fixed language can be recursively (i.e. effectively) enumerated.
Assuming this to be done, ¢, denotes the partial recursive function
defined by the eth finite set of instructions. Given an argument x and a
number e of a set of instructions, it is not possible to determine effectively
whether or not ¢,(x) is defined. However, it is possible, for each n, to

determine effectively—in e, x, and n—whether or not ¢,(x) is defined in n
atane hyv camnly carrvineg a1t m aotance f the oth aloanrithim anmliad +4 v ond
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observing the outcome. “¢;(x) is defined” will mean that ¢,(x) is defined
in n steps; in that case the value of ¢;(x) will be ¢,(x). Furthermore if
¢,(x) is defined there must be an # such that ¢;(x) is defined—and for all
n'Zn, ¢ (x) is defined and equals ¢,(x). The formal statements and veri-
fications of these remarks can be found, for example, in Rogers [5,
Theorems 1-IV and 1-IX].

In what follows a society will also satisfy the conditions (i) each person
knows only finitely many other people (i.e. X is locally finite) and (ii)
everyone knows someone. If all but (ii) are satisfied by 2, then X will be
called a partial society. The connected components of a partial society =
are called the communities of Z.

We say that the society X is recursive if B is the set of even natural
numbers, G is the set of odd natural numbers, and S is a recursive set of
ordered pairs. We will use B(n) for 2n and G(n) for 2n+1 and say that
B(n) is the nth boy and that G(n) is the nth girl. A recursive society is said
to be recursively (symmetrically) solvable if there is a 1-1 (onto) recursive
function f'such that, for each n, B(n) knows G(f(n)).

We say that the graph I'=(P, S) is recursive if P=N and S is a recursive
set of ordered pairs. I' is said to be recursively k-chromatic if there is a
recursive function f of one variable whose range is a subset of
{0, 1, -, k—1} such that if x is adjacent to y then f(x)%f ().

Let 2 be a recursive society and let j be a 1-1 function which maps S
recursively onto N. Define j(I'y) to be the graph whose points are N and
whose arcs are the pairs { (b, g), j(b’, g')} such that {(b, g), (b', g')} is an
arc of I';. Observe that if X is a recursive society, j(I'y) is a recursive
graph. Since j(I'y) is isomorphic to I'y, we know that if X is a k-society,
J(I's) is a 2(k—1)-regular graph, and that, by Lemma 2, j(I'y) has chro-
matic number k. Lemma 3 shows that if j(I'y) is recursively k-chromatic,
then X is recursively solvable. These observations show that the following
corollary is a consequence of the existence of a recursive k-society which
is not recursively solvable. This will be proved in §2.

CoOROLLARY.  There is a recursive 2(k— 1)-regular graph whose chromatic
number is k, but which is not recursively k-chromatic.

2. Recursive k-societies without recursive solutions.

THEOREM. For each k22 there is a recursive k-society which is sym-
metrically solvable but is not recursively solvable. ‘

Proor. In the proof we construct a recursive society X by stages;
at stage n, for each n>0, a partial society =,=(B, G, S,), with S, finite,
is effectively defined so that, for each n, S,=5,,; and so that £=
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into §,”” we will say “‘introduce x to y” or “introduce y to x” at stage n.
A person is called a “stranger’” at a given point in the construction if he
has not yet been introduced to anyone. At the beginning of each stage n
of the construction there are numbers @ and b (with a=» and b=n) such
that the first @ boys and b girls are not strangers at that point, but the
remaining boys and girls are; we will reserve the numbers a and b for this
purpose, so that B(a) and G(b) always are the first male and female
strangers at the beginning of the appropriate stage of the construction.

For each n, each introduction made during stage » involves at least one
person who was a stranger at the beginning of stage n. This feature,
together with the effectiveness of the construction of S,, implies that X is
recursive. To see this we show how to decide whether or not B(p) knows
G(g). Let n>p and n>q. Since the first male and female strangers at
stage n are B(a) and G(b) where a=n and b=n it follows that B(p) and
G(g) have acquaintances in X,. Hence B(p) knows G(g) in X if and only if
he already knows her in X,. But whether or not he knows her in X, can
be effectively determined by effectively reconstructing S,.

The community of the partial society X, ; to which B(/) belongs at the
beginning of stage n will be denoted C,(i). C,(i) is called stable if C,(i)=
C, (i) for all m=n. The remarks in the preceding paragraph show that if
C,(i) is stable, then no member of C,(i) will ever meet someone new.
In particular, if C,(i) is stable and B(p) and G(g) are in C,(i) but cannot
marry in C, (i) (i.e. there is no solution to the marriage problem of C,(i)
in which B(p) marries G(g)), then B(p) cannot marry G(g) in X.

We now define simultaneously the recursive society £ and & 1-1 recur-
sive functions ry, ry,* - -, r,_; (with pairwise disjoint ranges); at the end
of stage n, r (i) will be defined for all i<n and t<k.

Intuitively, the construction will guarantee that if ¢,(r,(¢e)) is defined
for all <k than no solution to the marriage problem of X simultaneously
marries each B(r,(e)) to the corresponding G(¢,(r,(e))), so that ¢, cannot
be a solution to the marriage problem of 2. Since every recursive function
is ¢, for some e, this implies that the marriage problem of X has no
recursive solution.

We assume as part of the induction hypothesis that at stage n for each
i<n either all B(r(i)) are in the same community or they are in k different
communities. In the former case, the community is a stable one in which
each person knows exactly k others. In the latter case there is a p such that
for each <k the community C, (B(r,(i))) contains exactly 1+ (k—1)k-+
(k—1)%k+" -« -+ (k—1)***'k boys and k+(k—1)%+- - -+ (k—1)*k girls,
and can be put into 1-1 correspondence with the nodes of the graph g,
below in such a way that boys correspond to nodes marked &, girls
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and two nodes are adjacent if and only if the people mapped to these
nodes know each other. If this is the case we shall say that C,(B(r, (i)
has form g,. We assume that the definition of the jth row of g,, for
0=/=2p+2, and of the ith position (from the left) on the jth row of g,
for 0=i<(k—1)"'k where j=1, need not be made explicit. It is also
clear what we mean when we say that (under a particular correspondence)
a certain person of the community C (which has form g,) is in the ith
position of the jth row of C. Note that in a community of form g, each
person except those on the top, i.e. (2p+2)th, row know exactly k other
people.

Stage n>0. Define r,(n—1)=a+t for each 1<k (the first k unused
boys) and establish for each B(r, n—1)) a community containing k
additional new girls, and k(k—1) additional new boys, so that it has the
form g,.

Let n=2¢q where ¢ is odd, say g=2m+1. If all B(r,(¢)) are already in
the same community proceed to stage n+1. If they are still in different
communities, and if either some $7(r,(e)) is undefined or all are defined
but some B(r,(e)) does not know G(é7(r,(¢))), then, since each of the k
communities is of the form g, where p=m—1, we introduce each of the
(k—1)*»*1k boys in the top row of each community to k—1 new girls
and each of these (k—1) - (k—1)2+k girls to (k—1) new boys. so that
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the resulting kK communities are all of the form g,,,,. Finally, we consider
the case where the B(r,(e)) are in different communities, where all ¢;(r,(e))
are defined, and where B(r,(e)) knows G(,(r,(¢))) for each t<k. We
assume that each C,(B(r,(e))) has the form g, and that the correspondence
between C,(B(r;(e))) and the nodes of g, places G(¢, (r,(e))) in the left-
most, i.e. Oth, position in the first row of C,(B(r,(e))), for each t<k.
[At most a relabelling is necessary to guarantee this.] Let B} be the boy
in the ith position of the top row of C,(B(r;(e))) for each i< T'=(k—1)*+k
and each t<k. Let Gy, Gy, * * , Gp(_1y—1 denote the first T(k—1) female
strangers. Introduce B; to each of G;, Gy, Goryss * * * 5 Gnyr4s fOT €aCh
t<k and each i<T.

This completes the construction of 2. Before we proceed to prove that
it satisfies the desired properties we shall consider the following situation
which contains within it the essence of the argument.

Suppose then that k=3 and that e is such that at stage n=2° we have
that ¢7(r,(¢)) is defined for each r<3 and that B(ry(e)) knows
G(¢2(ry(e))) for each 1< 3. At this stage each C,(B(r,(e))) has the form g,.
After rearrangement these communities take the form

0 p0g0 0 0 g0 gl gl gt gl gl gl g2 p2g2 g2 g2 g2
By BB, B, B, B By, B B, By B, B, B, BiB; By By BJ

G707 (o)) Gl o)) Al ()

Blryle)) Blr,(e)) Blr(e))
C_(B(ry(e)) C (B(r,(e)) C (B(r (o))

Thus the final case of the construction is the relevant one. After it is applied,
we obtain the community C,,(B(ry(e))) which assumes the form below.
It is now evident that in no solution to the marriage problem of

HH(B(r,,(e))) can B(r/(e)) marry G(¢;(r,(e))) for each r<3 For, of By,
BL, B exactly two marry G, and Gy; the remaining one B§" must marry
G(2(ry(e))) so that B(r,.(¢)) cannot marry her. Esmulcln]y. of B}, B}, B}
exactly two marry G, and G,; the remaining one B must marry
G(¢2(r#(e))) so that B(r#(e)) cannot marry her. Hence, in fact, only
(and exactly) one of B(r,(¢)) marries G(¢,(r,(e))).

We return now to the general case. It is clear from the construction that
3 is a recursive society (note that each introduction involves a stranger)
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in it knows exactly & others, or has form g where g is the direct limit of
the graphs g,; so again each person in it knows exactly k& other people.
That X is symmetrically solvable follows from Lemma 1.

Thus we need only show that X is not recursively solvable—i.e. that
no ¢, is a solution to the marriage problem of X. It suffices, of course, to
show that if ¢,(r,(e)) is defined for each <k and B(r,(e)) knows
G(¢,(ri(e))) for each t<k then no solution to the marriage problem of
C(B(ry(e))) marries each B(r,(e)) to the corresponding G(¢,(r,(e))). Note
of course that under these hypotheses at some stage n we combine the
C,(B(r,(¢))) into one community which is stable at stage n. We may
assume that at stage n each C,(B(r,(e))) has the form g, (for some p) and
that G(¢,(r,(€))) is in the leftmost position in the first row of C,(B(r(e))).

We shall show, by induction on j<2p+3 that for each i if A, is the
person in the ith position of the (2p+43—j)th row of C,(B(r.e))) for
t <k then in any solution to the marriage problem of C,(B(r,(e))) exactly
one of {At\t<k} marries a person on the row below—i.e. on the
(2p+2—j)th row. Thus taking j=2p+2 and i=0 we conclude that
exactly one of G(¢,(r,(e))) marries B(r,(e)), hence certainly not every
G (. (r,(e))) marries B(r,(e)).

For j=0 we must consider, for each fixed i, the boys B, B, - -, Bf™*
on the top row. Now at stage n each of these k boys was introduced to the
k—1 gitls G;, Gy, Gopyys "t 5 G_gypese In any fixed solution to the

1
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only other girl he knows is on the row below him. Also, since we added
[(k—1)?*tk] - (k—1) girls at stage n, the total number of girls in
Coi1(B(ro(e))) is [k+(k—1)%k+ + -+ +(k—1)¥k]k+ (k—1)**+2%k which
equals the total number of boys

[+ (k — Dk + (k — 1% + -+ + (k — DPHk]k

in C,1(B(ro(e))), so that any solution to the marriage problem of
C,11(B(ry(e))) is symmetric. Hence each G,p,, must marry one of Bj.
Hence exactly one B; marries a girl on the row below him.

Now assume that the claim is proven for j<2p+43 and suppose that
Jj+1<2p+3. Then each 4, in the ith position of the (2p+2—j)th row
knows exactly k—1 people on the row above the (2p+3—/)th row, and
these people are in the (i(k—1))th, (i(k—1)+1Dth, -+, (i(k— 1)+ (k—2))th
positions on the (2p+3—/)th row. Now exactly one of the people in the
(i(k—1)+s)th position marries a person below him, for each s<k—1.
Thus exactly k—1 of Ay, 4,, - -, 4;,_, marry people in the row above
them. Hence exactly one of them marries a person in the row below.
This completes the induction and the proof. [
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