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RESUME . -

Dans ce bref discours sur les chalnes récursives, je voudrals vous présenter
certaines questions qu'on se pose et vous donner un &chantillon des méthodes et
techniques qu'on emploie pour répondre & ces questions. Le contexte de ce
discours est fourni par la question générale suivante:

Etant donné wn théoréme combinatoire concernant les chaines, est-il
vrat effectivement? Si non, comment peut—on mesurer l'effectivité
du résultat ?

Un exemple de théoréme combinatoire vrai effectivement est le résultat de
Cantor selon lequel toute chaine dénombrable est isomorphe & un sous-ensemble
des nombres rationnels. On peut modifier la démonstration standard de ce résultat
pour décrire un algorithme qui produit le théor@me suivant:

Toute chaine récursive est récursivement tsomorphe d un sous-—
ensemble récursif des nombres rationnels.

Remarquez que tout emploi du mot '"récursif" doit &tre précisément défini; ainsi
par exemple, la phrase "chailne récursive" entraine l'existence d'un algorithme
au moyen duquel on peut déterminer si a < b ou non, et la phrase "récursivement
isomorphe" entraine 1'existence d'un algorithme au moyen duquel on peut calculer
les valeurs de la fonction,

Dans 1l'exemple que j'ai cité ci-dessus, la démonstration traditionnelle peut
étre effectivisée; il y a des exemples ol cela n'est pas possible. Dans ces cas-1a
on doit ou fabriquer un nouvel algorithme ou démontrer qu'il n'existe pas d'algo-
rithme convenable. Par exemple, la démonstration standard que tout ensemble bien
ordonné a une extension linéaire bien ordonnée ne peut pas s'effectiviser. Cepen-—
dant, un autre algorithme, que j'ai décrit avec H. Kierstead, démontre que:

Tout ensemble bien ordonné qui est vécursif a une extension
linéaire qui est bien ordonmnée et récursive.

La question de savoir si tout ensemble ordonné qui est dispersé et récursif a
une extension linéaire qui est dispersée et récursive reste ouverte.

I1 n'y a pas toujours une mani@re unique d'effectiviser une formulation com~
binatoire. Par exemple, une autre maniére d'approcher 1l'exemple mentionné ci-
dessus est de demander si tout ensemble ordonn& qui est récursif et récursivement
bien ordonné a une extension linéaire qui est récursive et récursivement bien
ordonnée. ("Récursivement bien ordonné" signifie que 1'ensemble ordonné n'a
aucune suite infinie récursive qui soit décroissante). Cette approche méne plutdt
a4 une solution négative, due 3 moi-méme et & R. Statman:

Il existe un ensemble ordonné qui est récursif et récursivement
bien ordonné, mais qui n'a pas d'extenstion lindaire qui soit
récurstve et récursivement bien ordonnée.

Apré&s avoir introduit la hiérarchie arithmétique de Kleene, nous répondons &
1'autre moitié de la question générale: Etant donné un ensemble ordonmé qui est
récursif et récursivement bien ordonné, quelle complexité l'extension linéaire
décivrde dAnitr—eclle naccddor ?
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Tout ensemble ordonmé qui est vécursif est récursivement ordonnéd
a une extension lindaire qui est récursivement bien ordonndeet est
situde au niveau 4, dans la hiérarchie arithmétique de Kleene.

La démonstration de ce thdor&me est un exemple de 1'utilisation des "argumenta-
tions diagonales' dans la théorie de la récursivita.

Les versions effectives de quelques autres résultats combinatoires sont
discut@es dans 1'article y compris le théor&me de Dushnik et Miller selon lequel
toute chaine dénombrable peut s'abriter dans un sous—ensemble propre d'elle-méme.

=

Ces sujets sont discutés & fond dans mon livre Linear Orderings (Academic
Press, 1982) dans le chapitre intitulé, comme on peut s'y attendre, Linear
Orderings and Recursion Theory.

wdok

The framework for this survey article about recursive linear orde-
rings is provided by the following peneral questions: Given a
combinatorial theorem about linear orderings, is it true
effectively ? If not, how can the effectiveness of the result
be measured ? Among the specific combinatorial theorems
considered in detail are (a) Every countable linear ordering
is order-isomorphic to a subset of the rationals (Cantor),
(b) Every well-founded (resp., scattered) partial ordering has
a well-founded (resp;, scattered) linear extension, and
(¢) Every countable linear ordering can be embedded into a
proper subset of itself (Dushnik and Miller).

*

In this brief talk about recursive linear orderings, I would like to convey
to you some sense of the questions that are ralsed and some of the flavor of the
methods and techniques that are used in answering these questions, I will not
try to be comprehensive,

The framework for this talk is provided by the following general question:

Given a combinatorial theorem about linear orderinge, is it true
effectively? If not, how ean the effectivencss of the result be
measured?

I use the phrase "linear orderings" the way others use the phrases “total
orderings” or “"chains.” Information about linear orderings can be found in my
recent book [5] on the subject; the chapter on recursive linear orderings also
contains the appropriate material on recursion theory.

All linear orderings that I discuss will be countable, and therefore we
need only look at subsets of Q (the rational numbers.,) This is correct by the
following theorem, due to Cantor:

Every countable linear ordering is (orden) isomorphic to a
subset of Q.

Is this combinatorial theorem true effectively?

Before answering this question, we must first formulate and explain the
effective version of Cantor's theorem. Loosely speaking, the way to arrive at
an effective version of a combinatorial result is to add the word "recursive" at
all appropriate locatioms. Using this heuristic, we arrive at the following
statement:
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Each of the three usages of the term "recursive" requires an explanation. Let us
think of a countable linear ordering as a structure <N,R> where N 1is the set
of natural numbers and R is a binary relation on N which defines a linear
ordering of N. Then we define the linear ordering <N,R> to be recursive if
there is an algorithm which, given a and b, will determine whether aRb or
bRa 1is correct. Similarly, a subset A € Q 4is recursive if there is an
algorithm which, given a € Q, will determine whether or not a € A. Also, a
function f£f:N + Q 1s recursive if there is an algorithm which, given a ¢ N,
will produce f(a) € Q; thus to say that <N,R> 1s recursively isomorphic to a
subset A € Q means that there is a recursive function £f:N + A which defines
an order isomorphism between <N,R> and <A,<>.

With these definitions, it turns out that the effective version of Cantor's
theorem stated above is correct, and moreover that the traditional proof can
easily be effectivized, since it already has an algorithmic flavor. Thus
consider the induction step for n = 6. We assume as the induction hypothesis
that

if 3R2R5R1RY4
then  £(3) < £(2) < £(5) < £(1) < £(4).

If now 3 R 6 R 2, then we would choose f(6) between £(3) and f(2), as in
the diagram below:

£(3) £(2) (5 (1Y E(AY

In order for f to be defined recursively, we must specify £(6) 1in a way
which can be systematically applied to define the other values of £, The
natural solution to this problem seems to be to define £(6) to be the midpoint
of the interval, but this leads to some difficulty for the following reason. We
have specified that the image of f be a recursive subset of Q so that we
must be able to provide an answer to questions like "Is (£(5) + £(1))/2 1in
f[N]?" Now if for some a e N we have 5 R a R 1, then indeed the midpoint

of the interval [£(5), £(1)] will be in Q, but otherwise it will not be.

But the question of whether there 1s such an element a € N cannot be answered
recursively, for the recursiveness of R only enables us to decide simple
issues like the relative position of two elements, but not more complicated
questions like the non-emptiness of an interval. Thus another definition of
£(6) must be produced.

Let us specify in advance a fixed canonical enumeration {qn|n e N} of @
(which will be referred to elsewhere in this paper) and arrange the construction
so that 1f q, {1s none of f(1), £(2), ..., f(n), then qy 1s not in f[N]
at all; then to determine whether or not b € £f[N] we need only determine b's
place in the enumeration and, assuming that b = qns carry out the first m
applications of the algorithm, and at that time determline whether or not
b € £f[N]. To achieve this effect, we define £(6) to be the first rational
number on the list qg, 97, qg, +.. Which is between f£(3) and f£(2), and
simlilarly for each other value of n. This algorithm then has all the required
properties.

In the example above the traditional proof can be effectivized; there are
examples where it cannot. In such cases, one must either produce a new
algorithm or prove that no suitable algorithm exists.
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As a second example of a combinatorial result, I will, in deference to the
organizers of this conference, discuss extendabllity of partial orderings. (I
am reporting here on discussions with H. Kierstead and R, Statman.) Consider
the following statement:

If A is a well-founded partial ordering, then 4 has
a well-founded linear extension.

Is this true recursively? That is, is the following statement correct?

If 4 is a well-founded recursive partial ordering, then
A has a well-founded recursive linear extension.

Here of course we are thinking of a recursive partial ordering as a relation R
on N for which there is a suitable algorithm.

The standard proof of this result (see for example Bonnet and Pouzet [1])
proceeds by "levels.," That is, we define Ang to consist of all minimal elements
of A, and proceed inductively to define A, to consist of all minimal elements
of A~ U {A6|8<a}. We now observe that the elements of each Ay are pairwise
incomparable and that this procedure terminates by some ordinal Y<IA|+ so that
A= | J{A,Jady}. We then well-order each A, to get B, and we define
B E{Ba|a<Y}.

This proof clearly cannot be effectivized. 1In fact, we cannot even begin
this way since there 1s no way of telling recursively which elements of A are
minimal, ’

There 1s however another algorithm which works., This algorithm and the
proof that it works are due to myself and H. Kierstead.

At stage n, we assume that we have already defined whether a <g b holds,
for all a, b < n, and that < 1s a linear ordering of {1, 2, ..., n-1}
which extends <p oun that set, Our task at stage n is to place n properly
among {1, 2, ..., n-1}g. In the picture below, we have circled those elements
m of {l, 2, ..., n~1} for which n <o m and we have squared those elements
m for which m <p m.

J
S C R E RO L ON OTE R 1O 1

{1, 2, ..., n-1}y

We could place n anywhere between the largest squared element and the smallest

circled element. We choose to place n at the location indicated by the arrow;

that is, n 1s placed just below the B-smallest m < n for which n <4 m. Thus
n  is placed as high as possible among {1, 2, eesy T-1lg.

It 1s clear that with this algorithm we do end up with a recursive linear
extension of A -- for to determine whether a g b or b <z a, we need only
reproduce the first k applications of this algarithm where %k 1s the larger
of a and b,

Note that although each element 1s placed as high as possible at the
appropriate stage, it 1s possible that at stage a, a 1s placed below b
with b < a, even though a *A b. In the diagram above such b are uncircled
elements which are to the right of circled elements, That 1s, if aIAb, a > b,
and a <g b, then at stage a we placed a below b because a <p ¢ for some
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¢ for which e < a and ¢ <y b. A sharper observation is that ¢ can be
chosen so that, in addition, e < b; this fact can be proved by induction on a.

Now suppose that B 1is not well-founded, so that there is a subset
{by, by, by, +u.} of B so that by >g by >p by >y vu. . We may assume without
loss of generality that by < by < by < +.. . Tor each 1 < j, either by >, b1
or by |a bj, o by Ramsey's theorem and the assumption that A is well-
founded, we may also assume that by |A by for every 1 and j. For each 1 > 1
we thus have by |4 by, by > by, and by <g by so that for each 1 > | rthere
ls some ¢y such that cg < by and by <z eqy <p by. Since each ¢y < by,
there must be some c¢; < by such that by <4 ¢y <g by for infinitely many by;
we may of course assume that c¢; is chosen minimally with this property, By
eliminating all other by, we may thus assume that the original sequence
satisfies by <j 1 <p by for all i > 1.

If we continue this procedure inductively, we conclude that for the original
sequence by >p bs >y by >y ... there is a sequence €], €9, €3, ... 8such that
for all 1 > j we have by ¢, ¢y <g bj and that each is chosen minimally
(so that there is no d < ¢; such that by <4 d for infinitely many by with
i > j). Because of the minimality, and since ey <g bj <p ey for 1> j
implies that ¢y # cy, we know that c) < ey < cq < ovu o

We now claim that ¢ DA €2 Pp €3 >p 4e., contradicting the assumption
that A is well—founded. Indeed, since cy+1 <B b1+ <p e4> we know that
+1 < e3. If 41 A ¢4 then we must have €] XA cj.' Since ey > ey,
g fo]lows that for some A <e 4y we get +1 <ad < Cye But then
by <a cq4) <4 d < cy for all i > j+l. Thgs contradicts the choice of ¢4
since A < ¢4. Hence €441 4 ¢ for all j, contradicting the assumption that
A  is well-founded. Hence B s well-founded, completing the proof.

As noted by several people, this algorithm provides a new proof that if &
is an infinite cardinal number and & § A than there is a linear extension B
of A for which «x f B.

It is interesting to see what happens if this particular algorithm is
applied to a partial ordering which is not well-founded. Let A be the full
binary tree, labelled as in the diagram:
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It is easy to see that if this tree were extended to a linear ordering using the
algorithm presented above, then the even numbered points would form a set of
order type n (of the rationals). Indeed for each n, the 20~1 ayen numbers
at level n of the tree would, in this linear extension, be located in the

20-1  jntervals formed by the 27"1-1 even numbers at higher levels of the
tree. Of course, one can extend this partial ordering to a scattered linear
ordering by using the opposite algorithm, namely, by locating each point at the
lowest position possible.

The example above arises when one asks whether every scattered recursive
partial ordering has a scattered recursive linear extension. The combinatorial
version of this question has a positive answer, due to Bonnet and Pouzet (see
[1]), and also to Galvin and MacKenzie. Whether the effective version is true
is an open question,.

Open question: Does every scattered recursive partial
ordering have a scattered recursive linear extension?

The astute reader will perhaps have noticed that in giving the effective
version of our second example we did not quite follow the prescription laid down
in our first example, namely, to add the word "recursive" at all appropriate
locations, 1In the theorem we assumed that A had no subset of order type w*
and showed that then B had no subset of order type w*, What if we assume
only that A has no recursive subset of order type w”; can we then extend A
to a recursive linear ordering which has no recursive subset of order type o*?

Let us then say that A is recursively well~-founded if A has no
recursive subset of order type ", The conclusion below, due to myself and
R. Statman, aunswers the question above:

There ie a recursive partial ordering which ie recursively
well-founded but has no recursively well-founded recursive
linear extension.

The proof of this result—-by constructing a suitable counterexample--has
two steps. The first step involves constructing a recursive binary tree--a sub-
ordering of the tree above--which though infinite (and therefore contains an
infinite path by Konig's Theorem) contains no infinite recursive path., This
kind of construction is familiar to recursion theorists; I will say more about
how one constructs such a tree later in this paver,

The second part involves showing that such a partial ordering cannot be
extended to a recursively well-founded recursive linear ordering. Assume then
that A 1s a recursive subtree of the full binary tree which is recursively
well-founded and assume that B 1is a recursive linear extension of A, We will
show that B has a recursive subset of order type w* by constructing a
recursive w*—sequence of elements of B. This will of course prove the result.

The method of constructing such a sequence might be called a B-first search
through A, generalizing the notions of breadth-first search (1.e. level
search) and depth-first search (i.e. greedy search) through A which correspond
to particular linear extensions B of A, At the end of stage n we will have
defined a descending B-sequence fay, as, ..., an}l and a pool P, of elements
of A from which apy] Wwill be selected. We assume as part of the induction
hypothesis that {Bl, A9, eees an} forms a terminal part of the tree A, that
is, for each i, if b 1is above ay on the tree, then b = a; for some
j € i, and that the pool P, consists of all immediate A-predecessors of

elements of {ﬂl’ A9y eesy an} except those which are already in
r . g g -
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and let P; be the A-predecessor of aj;. Proceeding inductively we let an+1
be the B-largest element of P, and we obtain P,y from P, by deleting
an+] and adding its A-predecessors. This completes the construction of what is
clearly a recursive subset of A, To show that this set has order type «* in
B, it suffices to show that a.;; <g ay for each t. But otherwise

ary] >p ar, for since ar § Py we cannot have ap4] = ap. Also at4] ¢ Prg
for otherwise we would have chosen it to be ay. But apy; € Pr so it must be
an A-predecessor of a., so that apy] <z a¢. This contradicts the assumption
that B extends A. Hence apy) <g a; for all t and B {is not recursively
well-founded.

We have thus presented two effective versions of the combinatorial fact
that every well-founded partial ordering has a well-founded linear extension.
One 1s correct and the other fails. I mentioned earlier that I do not know
whether the n version of the first result 1is correct; I also do not know
whether the n version of the second result is correct.

Open question: Does every recursively scattered recursive partial
ordering have a recursively scattered recursive linear extension?

Now that we have a combinatorial statement about linear orderings that is
not true effectively, we go back and ask how the effectiveness of the original
result can be measured.

To discuss this question, we have to introduce the classification of the
arithmetical sets, We say that a set K of numbers is a L,-set if there is
a recursive predicate R(xXy, X2, e«ss, Xp, y) such that

m € K ¢«=——> (3){1) (VXZ) (3)(3) SleXe (ann) R(X]_’ X925 sv0sy Xpy m)

where the n quantifiers are alternately 3 and V , starting with 3.
Similarly, we say that K is a I,-set if there 1s a recursive predicate
R(X], X2 «e», Xy, m) such that

me K «=——> (Vxl) (Exz) (\’/X3) coe (Qpxp) R(xy, X2, +es, X, m)

where agaln the quantifiers alternate, this time starting with \/ . A set X
is a Ap-set if it is both a I,-set and a Ill;-set. A set is called an
arithmetical set if it is a Ip-set or a ll;-set for some ., That these sets
form a hierarchy was shown by S.C, Kleene (for reference see [5]); that is, in
the diagram below all inclusions (indicated by arrows) are proper inclusions.

Sy
\n

2 I3

ad P

//
~

\ 83
| / \.\_\

5y 4y

Iy
\ ﬂ
I
For example, a set E 1s recursively enumerable if there 1s a Turing
machine which will produce all of its members; that is, if for some t,

N\

1G]
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meE «—» (ds) T(t, s, m)

where T(t, s, m) 1is the recursive predicate which says that "Turing machine
number t will produce m within s steps.” Now for each fixed t, the
predicate Ty(s, m) = T(t, s, m) is a recursive predicate R(s, m), so that
meE «—> (Fs) R (s, m). Thus every recursively enumerable set is a Zi-set;
the converse is also correct. A set is recursive if and only if both it and its
complement are recursively enumerable, or Zl—sets. Note that a set is a Iy-set
if and only if its complement is a I,-set, so that the Aj-sets are precisely the
recursive sets.

We let W. denote the t'th recursively enumerable set: We =
{ml (2s)T(t, s, m)}. (Hidden in the notation is the Enumeration Theorem which
says that the recursively enumerable sets can themselves be recursively
enumerated.) For which t is Wi non-empty? This set is L] since

W¢ non-empty «——> (dm)(As) T(t, s, m).

(In this predicate, the two existential quantifiers can be combined into one by
using the recursive function f(n, x) = (x), = the power of the n'th prime in x.
Thus the above 1s equivalent to (3 x) T(t, )1, (x)g) which can be simplified
to ( I x) R(t, x).) For which t is We infinite? This set is Iy since

We infinite ¢==> (Vn)(3m) (m > np m e W)
which can be rewritten in the appropriate I, form.

(ne ‘additional tepic that we need to discuss briefly is the use of an
oracle. During a construction we may find it necessary to refer to a set A
which is external to the construction, and inquire whether given numbers are in
A. TIn that case the set or function constructed is said to be recursive in Al
It turns out that if A is a % -get or a llj~set, then sets recursive in A are
all A 4 -sets. Thus, for example, if during a construction we need to know for
each t whether W, 1s infinite, then whatever we construct will be a Ay-set;
In this case, the oracle being consulted is {t|W, 1is infinite).

The arithmetical hierarchy provides a useful measure of the complexity of
given sets or constructions. The value judgment it propounds is that the lower
in the hierarchy the outcome of a particular construction, the better the
construction.

We now return to our previous question. Given a recursively well-founded
recursive partial ordering A, how complicated need a desirable linear exten—
sion B of A be?

In order for B to be recursively well-founded, it is sufficient to
guarantee that no W, provides a B-decreasing sequence of elements of A, How
do we do this? Suppose that after s steps we have enumerated (in order) the
elements aj, az, ..., ag of Weo If aj <g a4 for some 3 < i then Wi
will not be a B-decreasing sequence of elements of A, Otherwise, if we sit
idly by, it is possible that we will eventually have a; >p ay >g ..» >p 3 and
that, even worse, this pattern will continue until the very end. So we must
find some aj; and a; with 1 < j (either from those elements so far generated
or from those not yet™ generated) for which a; 1is not yet B-larger than a.,
and define a; <g aj. Since at each step of the construction of B we make
only finitely many decisions about A-incomparables, if Wi is infinite we will
always be able to find such an i and j, for otherwise we would be able to
find an w*—sequence of elements of A,
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The trouble is that we have to do the same thing for each Wy and so we
cannot wait around to find out if Wy is infinite., If it is, we will
eventually find a suitable i and j, but if it is not, then our search will
go on forever and no B will be constructed at all., If at a given stage of the
construction we want to dispose of Wy then we will need to know whether or not
We 1is infinite; if it is, we will search for the right ay and a;, and if
it is not, we will go on to Wy ;j. Thus the construction of B wiil be
recursive in a Ily set. The reader may have observed that we can use a simpler
oracle, namely, one that answers whether W, has another element. Since this
question is I, the construction of B will be recursive in an Ii—set. We
thus come to the following conclusion:

If A is a recursively well-founded recursive partial
ordering, then A has a recursively well-founded b Iinear
extension.

By a similar argument it is possible to show that

If A is a recursively scattered recursive partial
ordering, then A has a recursively scattered by linear
extension.

The proof we presented above is an example of the use of “"diagonal arguments” in
recursion theory.

Before going on to the next example, let me pause to point out how to
construct an infinite recursive binary tree which is recursively well-founded;
such a tree was used in an earlier argument. Start generating the full binary
tree. At a certain time, we may decide to close off a certain node; by this we
mean that nothing new will go below that node, so that below that node the tree
will remain finite. When do we make such a decision? We simultaneously begin
enumerating all W¢, and if it happens at some point that we have enumerated ¢t
elements of a particular Wi and those elements form a descending chain so far
on the tree, then we close off the lowest of the t nodes. The reader should
verify that the tree that results has the desired properties,

We now consider a third example of a combinatorial theorem about linear
ordering, this one due to Dushnik and Miller [2].

Any countable linear ordering can be embedded into a proper
subset of itself.

Can any recursive linear ordering be recursively embedded into a proper
recursive subset of itself?

Those of you who have seen the proof of Dushnik and Miller's theorem will
recall that in the scattered case the desired embedding was the identity outside
of a subset of order type w (or w*) and was the successor (or predecessor)
map on that subset. The twist came in the non-scattered case where a subset of
order type n was selected and A was embedded into that subset using Cantor's
theorem. More precisely, this procedure was needed only when A 1is a dense sum
of finite linear orderings.

Thus we need to find a dense subset of a dense sum of finite linear
orderings. Can we make such a selection recursively? For example, suppose that
A is a recursive linear ordering of order type 2¢n. The right-hand endpoints
form a subset of order type n but there is no way to tell recursively which
points are right-hand endpoints. (Show that this is a Ap-set.) Nevertheless,
the effective version of Dushnik and Miller's theorem 1s correct in this
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Any recursive subset A of Q@ of order type 2°N oaan
be recursively embedded into a proper recursive subset of
itself.

To prove this we enumerate A = {aj, ap, a3, ...} in order of discovery and
begin the definition of a function P: A -—+ A for which aj; ¢ P[A] by

setting P(a;) = aj. How do we define P(a9)? If for example ap > aj} we can
wait for some ap > ap and then define P(ay) = age But that will give us
problems later if a, 1is the successor of ajp but ap is not the successor of
a). Instead we walt for an a; which is not the successor of ag. How to do
this systematically we leave for the reader, (A more complete discussion of the
proofs of this and subsequent results in this paper can be found in my book [5].)

The same argument works whenever A 1s a dense sum of bounded finite
linear orderings. The reader might try his hand at the apparently open question
of what happens when A 1is an arbitrary recursive dense sum of finite linear
orderings.

We started this discussion by mentioning how easily Dushnik and Miller's
theorem works in the scattered case. This 1s far from true recursively, since
one cannot identify successors or determine the size of intervals recursively
even if A has order type w. The following result, due to L, Hay and
Rosenstein, 1s proved in [5].

There is a recursive subset A of @ of order type w for
which there is no recursive map from A to A other than
the identity.

There are several iInteresting questions which were raised in the above
discussion which merit further attention. Does every non-scattered recursive
subset of Q have a recursive subset of order type n? The embedding of
2+n into itself does yleld a recursive subset of order type n but that is
the best that can be done., That is, it is possible to construct a recursive
subset of Q of order type &£en (& is the order type of the integéers) which
has no Ay dense subset (Lerman and Rosenstein [4]); the best one can thus say
is that such a set has a IIy dense subset (try to prove this). I suspect, but
I cannot prove, that there 1s a recursive non-scattered linear ordering which
has no arithmetical dense subset,

Open question: Is there a recursive non-scattered linear
ordering which has no arithmetical dense subset?

A possible line of attack would be to construct for each n a recursive non-
scattered linear ordering of order type §glen whica has no Ay, recursive
dense subset, and then perhaps one of order type £ «n which has no arith-
metical dense subset,

Since there 1s no end to the combinatorial results about linear orderings
(and other structures), there is also no end to the questions of effectiveness
of combinatorial results that can arise., I will discuss briefly two more types
of questions. The first is the following: Given a recursive linear ordering
which has an automorphism, must it have a recursive automorphism? In my book I
construct examples of recursive linear orderings of order type & and 2<n
which have no recursive automorphisms. (The latter construction uses a priority
argument, which is a more sophisticated type of diagonal argument.) A recent
thesis by Steven Schwarz [6] contains the following definitive result: Let a
be a recursive order type (l.e. the order type of a recursive linear ordering).
Then there i a3 recurceive cutheotr A aAf O ~Af ardear tvna ~ whdakh hoo —e
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Finally, I should discuss the oldest result concerning effective versions
of theorems about linear orderings. Consider the classical fact that every
infinite linear ordering has either a subset of order type w or a subset of
order type w¥*. What is ‘the combinatorial version of this fact? Tennenbaum
showed a number of years ago that there 1s a recursive subset of Q of order
type w + 0¥ which has no recursive subset of order type w or w*; such a
set can be thought of as effectively finite, Watnick [7] extended Tennenbaum's
construction to show that for every recursive order type a there 1s a recursive
subset of Q of order type w + E¢o + w* which has no recursive subset of
order type w or w*, Looking in a different direction, it is possible to show
that every recursive linear ordering has a recursive subset of order type w,
w*, w + w*, or w + £°n + w*; Lerman [3] showed that this was best possible by
constructing a recursive linear ordering of the last order type which has no
recursive subset of any of the other three order types.

As I have mentioned several times already, these results and constructions
are discussed at some length in my book [5], in the chapter titled, not
surprisingly, Linear Orderings and Recursion Theory,

I hope that 1n this talk I have succeeded in conveying some of the flavor
of the subject of recursive linear orderings.
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