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4 well-known theorem (Engeler, Ryll-Nardzewski, Svenonius) characterizes the k;-cate—
gorical theories T as those for which Bn(T) is finite for each n (where Bn(T) is the
Boolean algebra of equivalence classes of well-formed formulas in the variables A seeesX

n

with respect to the equivalence relation

TF—(xl)...(xn)(¢(xl,...,xn)<%—€>w(x1,...,xn)) .

One immediately asks whether a better result is possible--namely, whether there is an
m such that T is N%—categorical whenever Bm(T) is finite. To deny this, it is suffi-
cient to exhibit for each n a system M~ for which Bn(T(Mh)) is finite but Bn+l(T(Mh))
is infinite. That is precisely the purpose of this paper.

The system Mh is a partial ordering in which transitivity is vacuously satisfied--
i.e., no element satisfies both (Fy)(x<y) and (Ey)(y<x) , so that M~ consists of a
top set and a bottom set with each element on the bottom being less than certain elements
on the top., Thus the universe of Mh can be written as the disjoint union {ai}iEN U
{bj}jEN , and if d<c then 4 is bj for some (unique) j and c¢ is ay for some
(unique) i . We shall denote {bj| bj<<ai} by &, .

To guarantee that Bn+l(T(Mh)) is infinite, we construct M~ so that for each k the
well-formed formula (Ekz)(z <Xy AL A z<xn+1) is satisfied in Mo ((Ekz)(...) is of
course an abbreviation for a well-formed formula which would normally be interpreted "there
are exactly k distinct z's such that,..")

The same shouldn't happen to Bn(T(Mh)) so we will be particularly careful and have
giIIWQisz...fﬁgin infinite for any choice of i, 12, I in . Of course more than that
will be necessary in order to make sure that Bn(T(Mﬁ)) is finite; we shall in fact arrange

matters so that whenever two n-tuples (rl,r2,...,rn> and (sl,sz,...,sn) have the same
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teonfiguration" (i.e., for each i and | , ri:rj if and only if si=:sj 5 ri<rj if

and only if s.l<sj ,and T, 1isa top (bottom) element if and only if s, is a top (bot-

tom) element, then there is an automorphism m of M ~ such that 'H(I'i) =g, for 1<i<n .
This symmetry guarantees that the well-formed formula which describes the "configuration" of}
the n-tuple is an atom of Bn(T(Mn)) , and, since there are but a finite number of "co.n.f"j,[gur-ﬁfE
ations" of n elements, the number of such atoms is finite; but since any n-tuple has a |
configuration, it satisfies some atom, so we may conclude that Bn(T(Mn)) is generated by

these atoms, hence is finite. This symmetry will be realized by guaranteeing that for any

set of top elements and any coherent way of choosing for each n-element subset By 5eresd
1

of these a finite subset B of a; Naeue ﬂgi there are top elements a which simultane- ;
1 il
ously realize all of these intersections in the sense that

Qn(&. ﬂ...ﬂa. ):B !
= E
1 n :

for each il""’in and corresponding B .

Thus we shall define a relation < on {ai}iGNU {bj}jEN so that
(1) if d<c then d is bj for a unique j and c¢ 1is a; for a unique 1 ,

(i) a, Na. N...Na,
ll 12 1

(iii) a, Na, N...Na. Na, is finite if 1 ,i,,...,1 are all different, _
i, 71, i, Tt 1’72 ntl

(iv) if B 1is a finite subset of {bj}jEN then there are infinitely many i's for which

’

is infinite for each il’i2""’in

BcCa, ,
= gt

(v) 4if K is finite and for each n-element subset L of K we are given a finite set
B. < (Na,) such that
b = apchrd

(L%:&BL) n <ig:£§i):BL

for each L€#£ (where £ is the set of all n-element subsets of K }, then there are
infinitely many distinct i's for which a N (n gi) =B, for each L&L )

i€L
Before defining the relation < we shall see why the above properties do guarantee

that Mn serves our purposes.

Theorem: Let (rl,r2,...,rn> and (sl,s2,...,sn) be two n-tuples of elements of M sucl*i
that for each i and j , rizrj if and only if s.=s, , ri<rj if and only if si<s‘%

end r, 1is a top (bottom) element of M~ if and only if s, is a top (bottom) element of

M. Then there is an automorphism 7 of M such that ‘IT(I‘i) =8, for 1<i<n .
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Proof: Let (ai yoeesty ) be an arrangement of the distinct top elements among {rl,...,r }

n
1 t
end let (aj ,...,aj > be the corresponding arrangement of the distinct top elements among
t
{sl,...,sn} . Let (bil,...,bi > be an arrangement of the distinct bottom elements among

€

{rl,...,rn} and let <bj ,...,bj > Dbe the corresponding arrangement of the distinct bottom
1 @

elements among {sl,...,sn} 5

So that we can apply (v), we select 8y seees8y and a, ,...,8, . Using (iv)
1 n de+1 In
let &, ,...,a, be n-t distinet a's for which {b, ,...,b. }S a and let
i i SR
t+1 n 1 (o}

a, ye.038., be n-t distinct a's for which {v. ,...,b, }Ca . We shall construct an
Jt+1 In 1 Yo
automorphism m of M  such that n@i)=aj for 1<x<n and ﬂwi):b. for 1<x<c .
. X bs pis X
The construction of © will be done in stages. We assume that at the end of stage k

we have defined two sequences (e, 285 geee sy ) and (a, ,a. 4...,a, ) . Let
=) otk 1 J2 Intk

Rk::K%H(xQKEiX)LJ{bil""’bic} and Sk::K%M(xQKQjX)LJ{bjl,...,bjc} where K 1is the set of

all ntl-element subsets of {1,...,ntk} . (Note that R and 8  are finite.) We assume

also that we have defined m, : L]{a. gEexexs) 5180 }=s ufa, 5...,a. } so that m is 1-1
k' U R ko K0 Intk k
onto, m (a; )=a, for 1<x<n+k, ﬁJbi):bj for 1<x<c , and that if bE€R,  then
X X X X
b <aix if and only if nk(b) <ajx
At stage k+1 we will define a, s a. ’ y S and we will extend
, B, ” et ' e
m to Mm% ] ula, ,...,a. }=s ula, ,...,a, } . It will be clear from our
k kt1 Rk+1 i, 1otk k+1 3 I otien
definitions that %Rk::gsk::{bj}jEN , that every ai is some aix and is some ajy , and

that % Me is indeed an automorphism of Mn with the required properties.

Stage k+l ¢ Assume that k is even and let ay be the first ay not occurring
ntk+l
among &, ,...,4a. . (If kx is odd, we let a, be the first a, not occurring
1 otk Ikt r
among a. ,...,a, and proceed analogously to find a, .
91 Intk Tntk+l
Let A =a, N(N a.) for each L€Z (where £ is the set of all n-element sub-

Tkt XL g
sets of {1,...,n+k}) and let Aﬂ::AL'_Rk . Note that the Ai are pairwise disjoint and

that the AL are finite.

Let B! be a subset of (XQngX-sk) with exactly IAiI elements (this is possible

.. .
because of (ii)) and let BL-BLU ﬁk(ALﬂ Rk) . Then BL c ngéjx and
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UB )N N a. U N Btym n n ﬂ a,
(L€£,L) xeLO-JX ezﬁ L xEL ‘J )= L& ([ £ U T AN By *€L, Jx)
U U U (m (AN n n a, )=B! Um (A. NR_)=B
= AN x&L 2y IV 1L (AN ) o-JX) R AR Y A
for each L €#£ . Hence by (v) we can find an a distinct from a, ,...,a, 80
© Intietl 1 Intk
that
N(Nna, = B[,
it & Je

for each L€£L, Let

Rk_l_l:Kl%M(chgic)U {ril,... )Ty }

t
o= U (Na YU{s, yeen,s, } |
Sk+1 ﬁ%ﬂ c€KJq 11, ’ i |
where ¥ dis now the set of all ntl-element subsets of {1,...,ntk+l} and define
oo Ufa, yeoo,a, }=s ,cufa, ,...,8, }
e’ e Uty el KT 0 IrHer1

)=a, , and '=B! any old 1-1 way (for each
y Y

by m ,|Dm=m_, =  (a,
1"k Tk ktl 1ok J et K+l L

LeEL,)

We leave it to the reader to verify that the indgction hypotheses are preserved and
that the claims concerning the result of the construction are true.

We claim that it follows that Bn(T(Mn)) is finite and that Bn+1(T(Mn)) is infinite.

The latter claim is easily substantiated; indeed, by (ii) and (v) the formulas
(Ekz)(z<xl/\ .../\z<xn)

are satisfied by distinct n-tuples of elements of Mn

To see that Bn_(T(Mn)) is finite, we note that any n-tuple has a unique configuration

and hence satisfies a unique "configuration formula"™ ¢ ., DNow if ¢ is any element of L:

Bn(T(Mn)) then because of the theorem above, either

T(Mn) - (xl)...(xn) (p=y) or
T00) b (ry)ee () (@~ ¥) 3

hence ¢ is equivalent (in T(Mn) ) to the disjunction of some subset of the set of
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configuration formulas. Hence Bn(T(Mh)) is finite.

It remains only to define < so that (i)-(v) hold. This will be done by stages--at
stage k we will define a, . We assume before we start stage k+1 that (ii) and (iii)
hold when il""’in+1 come from 1,...,k and also that infinitely many b's have been
placed in none of ay,...,8 . At the end of stage k+1 (i1) and (iii) will continue to
hold and in addition we will have met one of the requirements in (iv) or (v). In other
words, we assume that we have listed all the requirements of (iv) and (v) so that each ap-
pears infinitely many times. Thus at stage k+1 , we will try to do one of two things.

The first possibility is that we are presented with a finite subset B of {bj}jEN
énd we want BC B4 in this case, noting that by the induction hypothesis if
Nc {1,2,...,k} with <n elements then (XQNQX)F1(X Né;) has infinitely many elements,
for each N< {1,2,...,k} with <n elements we divide ( g a )N {(Na) into two infinite

XENTX XEN—X
pieces N; and N, , and we set §k+l::(N%an)U B (where n is the set of all subsets of
{1,2,...,k} with fewer than n elements.) Noting that for distinct N's in N the sets
above are disjoint, we can conclude that (ii) and (iii) continue to hold. Of course, we
have succeeded in getting B C 841

The second possibility is that we are presented with a case (v) requirement., (Note
that if some of the ay mentioned in the case (v) requirement have not yet been defined,
we should just attack the next requirement.) We proceed as above to divide (nggx)ﬂ (§%E§;)
into two infinite pieces Nl and N2 for each N€&€h (n as above) and we set &
§k+1::(N%th)LJ(L%iPL) . Again (ii) and (iii) continue to hold, and agsin we have succeeded
in meeting the requirement that presented itself at this stage.

This completes the construction of the systems M.n . I was unable to find in nature a
system Mn with these properties for any n>2 .

After my talk at the Leeds Summer School, J. V., Howard
pointed out examples for n=2 and n=3 which use infinitely many relations, but, except
for that, do occur in nature. (There are other examples which involve an infinite number of
relations.) For n= 2 , we define relations R, on the (rational) plane (a,b natural
numbers) by Rab(x,y,z) if and only if ax+tby=(a+b)z § it is then clear that BB(T(M))

is infinite and that B2(T(M)) is finite. For n=3 , we define relations R on the
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if and only if the |

(rational) complex plane (z (rational) complex) by Rz(zl’z2’23’z4) .
a

cross ratio (Zl,Zz,ZB,ZA) is 3
formations, and since any three distinect points can be carried t

points by a linear transformation, 1t follows that B3(T(M))

% : since the cross ratio is invariant under linear trans-|
o any other three distincﬁ

is finite and that BA(T(M)ﬁ

is infinite.
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