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TWO-DIMENSIONAL PARTIAL ORDERINGS:
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In this paper and the companion paper [9] we describe a number of contrasts
between the theory of linear orderings and the theory of two-dimensional partial
orderings.

The notion of dimensionality for partial orderings was introduced by Dushnik
and Miller [3], who defined a partial ordering {4, R) to be n-dimensional if there
are n linear orderings of 4, (A4, L;>, {4, L), ..., {4, L,> such that R = L;
Ly N +-- N L,. Thus, for example, if Q is the linear ordering of the rationals, then
the (rational) plane Q x @ with the product ordering ({x, y1> <oxe {2, 2> if
and only if x; < x; and y; < py) is 2-dimensional, since < g is the intersection of
the two lexicographic orderings of Q x Q. In fact, as shown by Dushnik and.
Miller, a countable partial ordering is n-dimensional if and only if it can be em-
bedded as a subordering of Q.

Two-dimensional partial orderings have attracted the attention of a number of
combinatorialists in recent years. A basis result recently obtained, independently,
by Kelly [7}and Trotter and Moore [10], describes explicitly a collection 2 of finite
partial orderings such that a partial ordering is a 2dpo if and only if it contains no
element of 2 as a subordering. The existence of such a 2 was known earlier, and
can be proved easily using a compactness argument. (Alternatively, see the review
of Harzheim [4].) Baker, Fishburn, and Roberts [1] showed that the theory of
2dpo’s is not finitely axiomatizable, although it follows from the existence of &
above that it is axiomatized by universal statements.

In this paper, we shall see that, at least from the perspective of recursive model
theory, the class of 2dpo’s behaves more like the class of partial orderings than like
its one-dimensional subclass, the class of linear orderings. For each of the following
sample negative results about 2dpo’s, the positive version is true for linear order-
ings.

(1) There is a recursive partial ordering which is a 2dpo but there is no recursive
function which embeds itin Q0 x Q.

(2) There is a recursive partial ordering which is a 2dpo but is not isomorphic to
any recursive subordering of 0 x Q.

(3) There is a recursively enumerable 2dpo which is not isomorphic to any
recursive 2dpo.

These results grew out of our attempt to understand the effective content of the
following analogous facts.
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122 ALFRED B. MANASTER AND JOSEPH G. ROSENSTEIN

I. Every countable linear ordering is order-isomorphic to a subset of Q;

I1. Every countable 2dpo is order-isomorphic to a subset of @ x Q.

Suppose we have a recursive ordering. Will there be a recursive function which
maps it onto a recursive subset of Q if it is a linear ordering? Will there be a recur-
sive function which maps it onto a recursive subset of @ x Q if it is a 2dpo? Al-
ternatively, how effective is Cantor’s proof of I and its generalization for II?

We will first see that the proof of I is completely effective. Before doing so, how-
ever, we define the notion of a recursive ordering. Since a partial ordering is a
binary relation R on a set A4, it seems appropriate to define a partial ordering to be a
recursive ordering if R is a recursive relation on a recursive set A. (This of course
presupposes that 4 is identified with some subset of the natural numbers N. Note
also that requiring 4 to be recursive is unnecessary: for, since R is reflexive, we can
tell whether or not a € A4 by determining whether or not <a, a) € R.)

Since we will be mainly concerned with partial orderings we will henceforth
denote the binary relation R on 4 by <, and we will often abuse our terminology
by referring to (A, <, simply as 4; conversely, when we speak of an ordering A4
we imply that we are speaking of a particular binary relation on 4, which has been
suppressed from the notation exclusively for typographical reasons. As usual, we
will write a < 4, b to mean that a <, b but that b £ 4 a. We also use the symbol
| to represent incomparability.

In this paper, we interpret Q as a recursive ordering by identifying the rationals
in some canonical way with the natural numbers, so that the associated enumera-
tion of Q is ry, ry, 9, ... and the ordering of Q is identified with the recursive set
{<i, jy | r; <gr;}. Similarly, we interpret Q x Q as a recursive ordering by identi-
fying, in some canonical way, the elements of @ x Q and N; the associated enu-
meration is then @ x Q = {{x;, y;> | ie N} and the ordering of Q x @ is then
identified with the recursive set {{i, j> | {x;, 1> <oxe {Xj» Yi>}-

One further convention: Whenever we speak of a recursive ordering M, we
always tacitly assume that M is identified in some fixed way with a subset of N.
Thus when we say *““choose the first element of M such that 22 we will always mean
“of the various elements of M which satisfy 2, choose the one which corresponds
to the smallest element of N”".

Theorem | is the kind of fact that exists in the folklore long before it is first
uttered.

THEOREM 1. Let M be a recursive linear ordering. Then there is a recursive function
which maps it isomorphically onto a recursive subset of Q.

ProoOF. Repeat verbatim the classical construction which embeds a countable
linear ordering M into Q by enumerating M = {my, my, m,, ...} and by defining
the map f: M — Q inductively. This map becomes recursive if M is enumerated
recursively and if, in defining each f(m,), we specify that it shall be the first ap-
propriate member of Q.

The range of f may not be recursive, although it is recursively enumerable, be-
cause one can never tell whether or not an element of Q, which is not yet in the
range of f, will eventually be in its range. To circumvent this problem, we need only
modify the construction above so that we choose for f(m,) the first appropriate
element of Q which is not among the finitely many elements ry, rq, 72, ..., 1, of Q.
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Then, r, will be in the range of fif and only if r, = f(m;) for some { < k and the
range of f will be recursive. [ |

We observe that, as an alternative to modifying the construction in the proof
above, we could have deduced the desired result from the following observation,
whose proof is similar. Given any recursively enumerable subset 4 of Q (such as
the range of the original fabove), there is a recursive subset B of Q with the same
order type such that an isomorphism between the two can be effected by a recursive
map.

Moreover, we phrased the proof so that it depended only on M being recursively
enumerable. Thus if we define a partial ordering (M, <,,> to be recursively enu-
merable (RE) if both M and <, are RE, then any RE linear ordering satisfies
the conclusion of Theorem 1. (The experienced uniformist will observe that there
are recursive functions which, given an index for M, will produce indices for the
recursive subset of Q and for the recursive isomorphism.)

As a consequence of Theorem 1, we can see that a variety of different possible
definitions of recursive linear order types are equivalent.

COROLLARY 2. Let t be an infinite linear order type. Then the following are equiv-
alent.

(1) There is an RE linear ordering of order type t.

(2) There is an RE linear ordering of order type t whose field is N.

(3) There is a recursive linear ordering of order type t.

(4) There is a recursive linear ordering of order type v whose field is N.

(5) There is an RE subset of Q which has order type .

(6) There is a recursive subset of Q of order type 1.

(7) There is a recursive linear ordering whose field is N and a recursive function
mapping it isomorphically onto a subset of Q of order type t.

Proor. It suffices to present a proof that (1) implies (4). That, together with
Theorem 1 and the subsequent remarks, yields all of the other implications. So
assume that (M, <, > is an RE linear ordering. Enumerate the infinite set M in
some fixed effective manner, assigning to the ith element m, enumerated in M the
number i. When m; <, m; is enumerated in <, place {i, j» into R. Then <N,
R) is clearly an RE linear ordering isomorphic to (M, <,,>. Futhermore, since for
each i and j either m; <, m; or m; <, m;, we conclude that either (i, j> € R or
{J, i) € R (but not both unless i = j) and hence that R is actually recursive. [ ]

We define an order type 7 to be a recursive order type if it satisfies any one, and
hence all, of the above conditions.

We turn now to the 2dpo case and show that the situation is quite different. Let
us define M to be recursively embeddable in the plane if it is recursively isomorphic
to a subset of Q0 x Q. (That is, there is a recursive function f with domain M which
satisfies a <, b iff fla) <o f(b).) We say that M is embeddable as a recursive sub-
set of the plane if there is a function f, whose domain is M and whose range is a
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124 ALFRED B. MANASTER AND JOSEPH G. ROSENSTEIN

THEOREM 3. There is a recursive 2dpo which is not recursively embeddable in the
plane, and hence is certainly not recursively embeddable as a recursive subset of the
plane.

ProoF. We shall construct a recursive partial ordering (B, <p) of N wihch is
composed of countably many disjoint sets denoted By, By, B, .... We refer to the
set B; as the ith box and agree that xe B;, ye B;, and i < j imply x <py. The
construction of < pis described as an enumeration of < pin stages with the relations
just specified understood implicitly.

The eth box will contain three pairwise incomparable elements, denoted a§, a$
and a3, and may also contain one additional element, denoted b,. If it is defined, b,
will ensure that ¢, is not a recursive embedding of < into the plane.

We now describe the construction. There are two types of stages depending upon
whether the stage is or is not a power of 2.

Stage 2¢. Define a§, a5, a§ to be the three least elements of N not yet used in the
construction.

Stage 2¢(2s + 1) [s = 1]. Go directly to the next stage of the construction unless
all of the following conditions are met.

(1) b, has not been defined at an earlier stage of the construction;

(2) pi(a?) is defined for each i < 2;

(3) The three elements ¢ (af), i < 2, are pairwise incomparable in @ x Q.
Let ¢ be that permutation of {0, 1, 2} for which the first components of ¢,(a5«),
©a50)), Pa) are in increasing order. Our third assumption shows that the sec-

ond components of this sequence must be in decreasing order.

a5 )
<pe(af(1) ) :
¢z(af(2)) T

Let b, be the first element not yet used in the construction. Enumerate b, > g g
and b, >p aj.

This completes the description of the construction. < p is recursivessince, for any
elements x and y of N, as soon as both are used in the construction, the < p relation
between them (including incomparability) is established. In particular, if b, is
defined, b,|afy so that ¢, cannot be an embedding of < into @ x Q. Finally,
we note for completeness that <y is easily embedded in the plane although not
recursively. [ ]

Theorem 3 is similar in flavor and proof to several other known theorems
concerning recursive aspects of combinatorial problems. We cite three examples.
There is a recursive tree which has an infinite path but no recursive infinite path.
(See [6] for a complete analysis.) There is a recursive society which has a solution
to its marriage problem but no recursive solution [8]. There is a recursive parti-
tion of N@ for which there is a homogeneous set but no recursive homogeneous
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To construct a recursive subset 7 of Q x Q which is isomorphic to B, we first
exclude from T all points of Q x Q not within one of the squares S,:

e+ le+1)

' N

(e, Pe)

Place in T three uniformly chosen diagonal points of S,, say a, b and ¢, and exclude
from T all other points of S, except those in S,. For each e and ¢, see whether b,
is newly defined at stage ¢ of the construction of <. If so, put into T the first ele-
ment of @ x Q which is in S, and is not among the first ¢ elements of Q x Q.
(Thus, for any s, if the sth element of Q x @ is not in T by time s it will never be in
T.) It is then clear that T is order-isomorphic to B and is a recursive subset of the
plane.

We will next construct a recursive 2dpo which is nct even embeddable as a
recursive subset of the plane. The proof makes use of the following combinatorial
lemma, which appears interesting in its own right. We do not know whether this
result was previously known, nor whether our example is the simplest possible.

LEMMA 4. There is an infinite sequence of finite 2dpo’s, no one of which is embed-
dable in any of the others.

Proor. For n > 4, let D, be the partial ordering with 2n + 1 points 4, ..., d,,
Iy, ..., I,_4, 51, and 55, ordered by the transitive closure of

l; <diand |, < d;y;forl <i <n,

d; < s forl <i<n,and

d; < spforl <j<n
For example, D; is represented graphically by

d 51
L 4, S2
L ds
I dy
Iy ds
s ds
Is d,.

The points d; are called diagonal points of D,, the points /; subdiagonal, and s;
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chains of length 3 are /; < d; < s, for some j, i, k. This implies that ¢ must carry
diagonal points to diagonal points, subdiagonal points to subdiagonal points,
and superdiagonal points to superdiagonal points.

Since ¢(s%) € {s7, sy}, we shall assume ¢(sf) = s{". This assumption simplifies
notation, but a dual argument can be carried out in case ¢(s7) = 53. Since d7 is the
only diagonal point incomparable with s3 in D, and d7' is the only diagonal point
incomparable with s in D,,, ¢(d%) = d7. Since I; is the only subdiagonal point
less than d, in both D, and D,,, ¢(/;) = 1,. Since d, is the only diagonal point greater
than /; other than 4; in both D, and D,,, ¢(d;) = d,. Since [, is the only subdiagonal
point less than d, other than /; in both D, and D,,, ¢(l;) = l. Continuing, we see
that o(d?) = d. Since d2|st, p(ds) = d|st = ¢(s1). This can only happen if
m = n so that the lemma is proved. |

THEOREM 5. There is a recursive partial ordering which is embeddable in the plane,
but is not embeddable as a recursive subset of the plane.

PrOOF. We shall construct a recursive partial ordering (R, <jz) of N which is
composed of a sequence of boxes By, By, B, ... satisfying the conditions described
in the first paragraph of the proof of Theorem 3. Each box B, will contain one
copy of each of three of the sets in the sequence {D,,|m > 4} and possibly, two
additional points. A two-dimensional representation of B, would look like

O
D,' j’)
k
J
D

where the two circled points may be absent.

The construction will proceed during the simultaneous enumeration of two
recursively enumerable sets, W and ¥, which are recursively inseparable. If n
turns up in W, two points will be added to B, so that any two-dimensional re-
presentation of B, will have a certain form; while if » turns up in ¥, they will be
added to B, so that any two-dimensional representation of B, will have a different
form. If all this is done carefully, any recursive subset of the plane isomorphic to
R would yield a recursive separation of W and ¥, contrary to hypothesis.

We proceed to the construction. Using all of the even natural numbers we gen-
erate recursively one example of each of the partial orderings {D, |n > 4}. We
place the points of Dy, ; into B, for i = 0, 1, 2; here, and subsequently, n’ is n +
1. The only other comparability relations among the even numbers are determined
by our convention on the partial ordering to the boxes By, By, By, ...

We now simultaneously enumerated W and V in a 1-1 manner. When n is enu-
merated in either W or ¥, the first two odd numbers not yet used are placed in the
box B, If nis enumerated in W, the first of the two points is placed above all points
of Dy,rq and Dy, but incomparable with all points of Ds, 3, while the second is
placed above all points of Dy,y; and Dj,,3 but incomparable with all points of
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Dg,,. If, on the other hand, n is enumerated in V, the first of the two points is
placed above all points of D, and D, , but incomparable with all points of
D, .1, while the second is placed above all points of Dy, and Ds,.5 but in-
comparable with all points of D,/ ,,.

This completes the construction. It is evident that R is recursive and can be
embedded in the plane. Indeed, a subset B* of the plane has the same order type as
R if and only if it is decomposable into

B
C
By
By
where for each n if n¢ W |J V then
Dy _
B} = L
Diprip

for some permutation {i, j, k} of {1, 2, 3}; if n € W then
__._O_—.

D3ﬂ,+t;

b J—
Bn = D3n’+1

D3n’+j

for some permutation {7, j} of {2, 3}; and, if n € ¥ then

O

D 3n'+i

*
Bn - D3n'+3

D3n’+j

for some permutation {i, j} of {1, 2}.




128 ALFRED B, MANASTER AND JOSEPH G. ROSENSTEIN

B}, and since there is an element of E below each pair of adjacent diagonal ele-
ments of E, it is readily verified that all the diagonal elements of E must lie in the
same Dy, ;. Since subdiagonal and superdiagonal elements of E are always com-
parable with some diagonal elements and incomparable with others, we see that
they must all be within the same Ds,, ;. By Lemma 4, E must actually be D, ;.
Thusift = 3n" + i,thenn’ = m’and i = jand Eis the subset of B* corresponding
to D,, as claimed.

Suppose now that B* is a recursive subset of the plane with the same order type
as R. We then obtain a recursive set F which separates ¥ and W as follows. Let
n be given. Search B* until subsets Sy,r1, Ssui2 Sswys Of order types Da,ryqs
Dy, 9, Dy, 5 are found. (This search must succeed.) We know that the sets found
make up the bulk of Bj. Let p;, p, and p; be points of Ss,4q, S3,r2 and Sa,ris
respectively. Determine which of the three is left-upper-most and which is right-
lower-most, and let p, be the remaining one. If t = 1, put n € F; otherwise, n ¢ F.
Clearly Fis recursive and W < F; also if n € V, p, must be ps, so that n ¢ F. Thus
F determines a recursive separation of W and V, contrary to hypothesis.

Hence R is a recursive partial ordering which is embeddable in the plane, but is
not embeddable as a recursive subset of the plane. [ ]

As a consequence of Theorems 3 and 5, the 2dpo version of Corollary 2 is some-
what different. Indeed, the various possible definitions of recursive 2dpo types are
inequivalent, Foreach m, 1 < m < 7, let T,, be the set of infinite 2dpo types satis-
fying condition (m) of Corollary 2 (where each occurrence of “linear ordering” is
replaced by “2dpo” and each occurrence of “Q” is replaced by “Q x Q).

THEOREM 6. T7 = TG = T5 == T4 = T3 == Tz = Tl'

All of the inclusions T;;; € T; are clear except possibly T; = T, which follows
from an argument similar to, and slightly easier than, our proof in Corollary 2
that (1) implies (4). This type of argument may also be used to show that T} = T,
T3 € T, and Tg = T;. That Ts = T will be stated and proved as Theorem 6A.
Theorem 5 shows that Ty # T4. An example to show that T3 # T, will be provided
in Theorem 6B.

THEOREM 6A. Let A be an RE subset of Q x Q. Then there is a recursive subset B
of QO x Q such that B ~ A. Moreover, B can be chosen so that if (x1, y1), (xg, ¥3)
are different points of B, then both x| # x5 and y| # ys.

ProOF. Let ¢ be an isomorphism from a subset C of @ x Qinto Q x Q. We say
that ¢ is a special isomorphism if whenever p; <. py and ¢(p;) = (x;, y;) fori = 1,
2, then x; < xp and y; < ys. Notice that the image of any subset of @ x Q under
a special isomorphism automatically satisfies the last statement of the theorem.

The density of Q shows the correctness of the following assertion, which is a
special case of the “Duplication Lemma” of Crossley and Nerode [2, p. 24].

Assertion. Let ¢ be a special isomorphism defined on a finite set C. Let E; and E,
be finite subsets of O and suppose that x ¢ C. Then there is a point u = (13, up)
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Atstage s + 1, extend ¢ to include a,4; in its domain using the assertion with E, =
E; = {ry, ..., r;}. The recursiveness of B = ¢(A) follows easily since (r,, r;) e B
iff (rt" rj) € {go(ao), el ¢(amin(t', j))}' .

The final statement of the theorem will be used soon in effectivizing a proof of
Dushnik and Miller.

THEOREM 6B. There is an RE 2dpo which is not isomorphic to any recursive 2dpo.

PRrROOF. We can enumerate a partial ordering (B, <p) of N which is composed of
a sequence of boxes By, B, B, ... satisfying the conditions described in the first
paragraph of the proof of Theorem 3. Each box B, will contain two copies of the
2dpo D14 defined in the proof of Lemma 4. Let K be an RE set which is not recur-
sive. If n ¢ K, each point in one copy of D, will be incomparable with each point
in the other. If # € K, all the points in one of the copies of D, ., will be greater than
all of the points in the other copy of D, 4. Finally, an argument like that at the end
of the proof of Theorem 5 shows that if (C, <) were recursive and isomorphic
to (B, <p), then K would be recursive. [ |

Let us return now to the questions we posed earlier. We found that although I
has a natural effectivization for recursive linear orderings, no reasonable effectivi-
zation of Il is correct for recursive 2dpo’s. One explanation for this is that in defin-
ing “recursive orderings” we just simply mimicked the definition of “recursive
linear orderings”—not an unreasonable procedure. However, as is apparent from
the outcome, a recursive ordering which happens to be a linear ordering is a more
recursive object than a recursive ordering which happens to be a 2dpo; thus the
failure of IT to effectivize properly can be attributed to the insistence on defining
“recursive linear ordering”™ and “recursive 2dpo™ in precisely the same way. Had we
not insisted on giving uniform definitions, we might have defined a partial ordering
{4, R} to be recursive 2dpo if there are two recursive linear orderings {A, S and
(A, T) so that R = S [] T. (Since this is the second version of a definition and
since it is stronger, we distinguish it from the first by a superscript 2.)

We first observe that every recursive subset of 0 x Q has the same order type as
a recursive? 2dpo (so that this definition is not overly restrictive). Let 4 = Q x Q;
as in the proof of Theorem 6A, we may assume that any two points of 4 have
different x-coordinates and y-coordinates. Given a e Q0 x Q, we write a =
(X2 Yo Define {4, S) by specifying that aSh iff x, < x;and define {4, T) by
specifying that aTB iff y, < y,. Then {4, ) and (4, T are recursive linear
orderings whose intersection is {4, <gyoD.

The following converse, which provides an effectivization of I1, is based on
Dushnik and Miller’s proof of II.

Turorem 2. Let (A, R) be a recursive® 2dpo. Then there is a partial recursive
Junction which maps it isomorphically onto a recursive subset of O x Q.

PRrOOF. Let R = S [| T where {4, §) and {A, T are recursive lincar orderings.
Let /g and /3 be partial recursive functions which map ¢4, S» and (A, T) respec-
tively onto recursive subsets of . Define £+ A4 — O s ) by fia) — (i) £ 1)
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so that f'is an isomorphism from 4 into Q@ x Q. Clearly f'is partial recursive and
the image of fis a recursive subset of @ x Q. [ ]

Perhaps then the new definition of recursive? 2dpo is more appropriate than the
first definition of recursive 2dpo even though the first is ““uniform” and the second
depends on the class of models. Another way of arriving at the same conclusion is
by looking at the effective version of the notion of universal models. Classically, a
structure is universal for a class of similar structures if each structure in the class
can be embedded in the given structure. Thus Q is universal for the class of count-
able linear orderings and Q x Q is universal for the class of countable 2dpo’s.
Theorem 1 shows that Q is recursively universal for the class of recursive linear
orderings in the strongest possible sense; that is, each recursive linear ordering can
be recursively embedded as a recursive subset of Q. On the other hand, Theorems
3 and 5 show that Q x Q is not recursively universal for the class of recursive
2dpo’s in any reasonable sense.

Although it is possible to construct a recursively universal model for the class of
recursive 2dpo’s (Theorem 8), such a model is, from an intuitive point of view,
hardly a satisfactory substitute for Q x Q. Its order type cannot be the same as
that of 0 x @, since the only property of Q x Q used in Theorem 5 was the fol-
lowing fact which is also true in any isomorphic copy of Q x Q: given any three
pairwise incomparable points, for exactly one of them it is true that anything bigger
than both of the others is also bigger than it. Futhermore, although the theory of
Q x Q, with constants for elements of Q x Q, is decidable, it can be shown, using
the partial ordering constructed in Theorem 5, that if U is a recursive 2dpo which
is recursively universal for the class of recursive 2dpo’s, then even the existential
statements of the theory of U, with constants for elements of U, is undecidable
(Theorem 9).

THEOREM 8. There is a recursively universal 2dpo. That is, there is a recursive 2dpo
U such that if (A, R) is a recursive 2dpo there is a partial recursive isomorphism of A
onto a recursive subset of U.

Proor. Note that a countable partial ordering is a 2dpo iff every finite suborder-
ing is a 2dpo, and that there is an efféctive method for determining whether or not
a finite binary relation is a 2dpo. The 2dpo U = (N, R)> will consist of a sequence
of boxes By, By, B ... as described in the first paragraph of the proof of Theorem
3; now, however, each box will contain infinitely many points. In fact, the eth box
B, will consist of all the numbers {7 | i € N} of the eth set of a recursive partition of
N into infinitely many recursive sets. (We assume that b,, is a recursive function of
e and i and that for each e, {b%|i € N} is enumerated in increasing order.) The effect
of the construction is to make B, look like

]
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where L, is a linear ordering of order type w and Re is either a finite 2dpo or, if ¢,
is the characteristic function of a recursive 2dpo in Ty, Re is isomorphic to that
2dpo by a partial recursive function. We omit the details of the construction, giving
only a brief description of the pertinent features. At each stage of the construction,
Re will be isomorphic to the 2dpo defined by ¢g on the largest possible initial seg-
ment of N. In the meantime, we expand L¢ upwards, being certain to place b¢ in B,
at the rth stage of the construction if it has not yet been placed. We leave the veri-
fication that this can be done, and that the resulting U has the desired properties,
to the reader. [ |

We can again use Theorem 5 to strengthen our earlier observation that U cannot
be classically isomorphic to QO x Q. In the final theorem below, we show that U
cannot be recursively presented in the sense of [2].

THEOREM 9. Let U be a recursively universal recursive 2dpo. The complete diagram
of U, i.e., the theory of the expansion of U by adjoining constants c,, interpreted as n
Jor each n e U, is undecidable. Indeed, the set of existential sentences of this theory is
undecidable.

Proor. Let 4 be the recursive 2dpo constructed in the proof of Theorem 5 and
let Wand ¥ be the disjoint recursively inseparable recursively enumerable sets used
in the construction of . Let #* be a recursive subordering of U and / a recursive
isomorphism of % onto #*. Let p%, p4 and p4 be recursive functions of # such that
for each ne N and ie {1, 2, 3}, p? € Ds,,; < B, in 9. The construction of #
shows that such functions exist. Let S be the set of those n for which

@x)(r(pD) < x A B(pY) < x A h(pY|x)

istruein U. W < Swhile V (1 § = @. Thus S is not recursive and the set of ex-
istential sentences in the complete diagram of U is not decidable. [ |

What conclusions can we draw from these results? For combinatorial theory, it
suggests that one definition of 2dpo (intersection of two linear oderings) has lower
combinatorial complexity than another (embeddability in the plane). For recursive
model theory, it suggests that there really is no one notion of ‘“recursive model”
which will work best in all situations and that, for different classes of structures,
different definitions of recursive model might be appropriate.
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