THE JOURNAL OF SymsoLic LogGIC
Volume 45, Number 1, March 1980

TWO-DIMENSIONAL PARTIAL ORDERINGS: UNDECIDABILITY
ALFRED B. MANASTER AND JOSEPH G. ROSENSTEIN

In this paper we examine the class of two-dimensional partial orderings from the
perspective of undecidability. We shall see that from this perspective the class of
2dpo’s is more similar to the class of all partial orderings than to its one-dimension-
al subclass, the class of all linear orderings. More specifically, we shall describe an
argument which lends itself to proofs of the following four results:

(A) the theory of 2dpo’s is undecidable :

(B) the theory of 2dpo’s is recursively inseparable from the set of sentences
refutable in some finite 2dpo;

(C) there is a sentence which is true in some 2dpo but which has no recursive
model;

(D) the theory of planar lattices is undecidable.

It is known that the theory of linear orderings is decidable (Laiichli and Leonard
[4]). On the other hand, the theories of partial orderings and lattices were shown to
be undecidable by Tarski [14], and that each of these theories is recursively insepar-
able from its finitely refutable statements was shown by Taitslin [13]. Thus, the
complexity of the theories of partial orderings and lattices is, by (A), (B) and (D),
already reflected in the 2dpo’s and planar lattices.

As pointed out by J. Schmerl, bipartite graphs can be coded into 2dpo’s, so that
(A) and (B) could also be obtained by applying a Rabin-Scott style argument [9)
to Rogers’ result [11] that the theory of bipartite graphs is undecidable and to
Lavrov’s result [5] that the theory of bipartite graphs is recursively inseparable
from the set of sentences refutable in some finite bipartite graph. (However, (C)
and (D) do not seem to follow from this type of argument.)

Various smaller classes of partial orderings have decidable theories. For ex-
ample, using a Feferman-Vaught technique [1], it is possible to deduce that the
theory of products of two linear orderings is decidable from the fact that the theory
of linear orderings is decidable [4]. It is also possible to show that the theory of
weak orders is decidable. (A weak order is a partial ordering such that (Vx)}(Vy)
(x <y—=(V2)(x < zV z < y)); essentially this means the result of replacing each
point in a linear order by a set of incomparable elements.) On the other hand,
Schmerl [11] has recently shown that the class of partial orderings of width 2 (no 3
elements are pairwise incomparable) is undecidable, and has pointed out that since
this is a definable subclass of the class of 2dpo’s, this result also implies (A).

The existence of a consistent sentence with no recursive model was first shown by
Mostowski [7], and Hanf [2] observed that this result is easily derived from his
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theorem on the existence of a finite set of tiles which can be used to tile the plane
only nonrecursively. The proof of (C), which asserts the existence of such a sentence
in the language of 2dpo’s, uses tile models like those of Hanf.

A definition of planar lattices can be found in Platt [8]; planar lattices have also
been investigated recently by Kelly and Rival [3]. We are indebted to G. McNulty
for suggesting that our techniques could apply also to planar lattices.

To prove (A), (B) and (C), we will first define a class of structures called tile
models and show that facts corresponding to (A), (B) and (C) are true of tile
models. Then, by coding tile models into 2dpo’s, we will obtain proofs of (A), (B)
and (C). Our use of tile models is similar to the use of tiles in R. Robinson [10] and
Hanf [2]; the proofs of (A) and (B) for tile models are in style of Biichi and the
proof of (C) is similar to the proof of the main theorem of Hanf [2]. The coding of
tile models into 2dpo’s and the resulting proofs of (A), (B), and (C) are in the style
of Rabin and Scott [9].

§1. Tile models. Intuitively, a “tile model™ on b tiles consists of the set of lattice
points of the upper half-plane, cach point of which satisfies exactly one of b unary
predicates. The predicates may be thought of as types of tiles (or, abusing language,
as tiles) covering the squares whose lower-left corners are the lattice points of the
model. Both predicates and tiles will be denoted Sy, Sy, ..., 8. The description of
cach specific tile model will include conditions concerning the existence of certain
tiles and restrictions on the possible tiles adjacent to any tile. Thus we may consider
the tiles as having certain patterns along their edges which permit only certain tiles
to fit together; the existence of a tile model is then equivalent to the existence of
a specified type of tiling of the plane. (In order to formulate (B), we also need to
allow finite tile models. Accordingly, we modify the description above to allow a
tile model to consist of any “rectangular” set of lattice points of the upper half-
plane; that is, any set of form {u,)Hlr<i<Randu<j< U} for some u, U,
r, R satisfying —00 < r < R< wand0 <u < U< )

Since we want arbitrary interpretations of the language of tile models to look
like tile models, it is convenient to add two binary predicates — and 1 to the
structure of tile models and corresponding symbols to the language of tile models.
Intuitively, x — y (respectively, x 1 y) means that the lattice point ) is immediately
to the right of (respectively, above) the lattice point x.

Given a computation of a Turing machine, we will describe a tile model which
represents that computation, with the rth row of the model representing the instan-
taneous description of the Turing machine at time «. Thus the point (¢, ¢) will be
covered by a tile which indicates the status of the cth cell of the tape after ¢ steps of
the computation, (The ¢th cell of the tape is the one which is ¢ cells to the right—or
_ ¢ cells to the left, if ¢ < 0—of the cell initially scanned by the Turing machine.)
The type of the tile covering (c, t) will indicate

(a) the current symbol of the cth cell;

(b) whether or not the machine is currently scanning the cell and, if so, the state

of the machine;
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(d) the initial content of the cth cell and whether ¢ > O or ¢ < 0;

(e) for tiles off the bottom row, whether or not the machine was scanning the cell
at the previous step; if so, the contents of the cell and the state of the machine at
the previous step.

We could, of course, specify the tile model associated with any computation of
a Turing machine more precisely and uniquely by fixing the method of determining
which type of tile S; encodes each specific set of data. Although we do not actually
do so, we will still assume that some uniform method has been followed for encod-
ing information into tiles. Note that, although an infinite number of types of tiles
is needed to deal with all Turing machines, for any particular Turing machine
only a finite number of types of tiles is required.

Now suppose we are given the Turing machine T,, and suppose that the tiles
Sy, Sy, ..., S, suffice to encode information about computations of 7,. We will
soon define a statement 7, in the language of tile models on b tiles such that

(a) 7, is true of the tile model M, of the computation of T, which starts on the
blank tape, and

(b) M, is isomorphically embeddable in every model of 7.

Furthermore, if we let H = {j|1 < j < b and S, codes a halting configuration
of T,} and let #°, be (Ax)\/ ;55 ,(x), then ¢, asserts that some point is covered by
a tile which codes a halting configuration of T,. (Note that the phrase ‘S, codes a
halting configuration of T,” means that S; indicates a cell with content ¢ being
scanned by T in state ¢ for a g and a ¢ on which 7, halts. When T, halts, we con-
sider the halting description to be continued at all later steps.) In particular 52,
is true in M, if and only if 7, halts when started on the blank tape.

Using the statements 7, and #,, we see that the theory of tile models (formulated
in a language with infinitely many unary predicates) is undecidable. Indeed, if it
were decidable, we would be able to decide, in particular, whether or not each
T, = #,is true in all tile models. However, if T, does not halt when started onthe
blank tape, then 7, = #’, is false in M,; on the other hand, if T, does halt, then
T, = H#, is true in all tile models (and indeed in all appropriate structures) since
every model of 7, contains a copy of M,. Thus 7, = #, istrue in all tile models if
and only if T, halts when started on the blank tape; hence any decision procedure
for the theory of tile models would yield a decision procedure for the halting
problem.

We now describe the statement 7, referred to above for (A). Later we will
explain the slight modifications needed for (B) and (C). 7, is a conjunction of
statements in the language of tile models. Each conjunct belongs to one of the
following six classes according to the type of condition it expresses.

(1) Growth. For every point, there are unique points immediately to its right,
immediately to its left, immediately above it, and, unless it is on the bottom row,
immediately below it. (Note that, assuming that B = {i < b | S; indicates a tile on
the bottom row}, the last statement can be expressed

VOLV S(x) = @Qz)0z 1 )] A ()Y t x Azt x=p=12])
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(3) Partition. Each point satisfies exactly one of the predicates .S;.

(4) Initial description. Some point is on the bottom row, and any point immedi-
ately to the right or left of a point on the bottom row is also on the bottom row. No
point on the bottom row has a point immediately below it, and each point on the
bottom row contaius a blank. A unique point on the bottom row is scanned, and
the tile on that point indicates that the Turing machine is in state ¢,.

(5) Transition rules. If a point x is not on the bottom row, then it is covered by
the same tile as the point y immediately below it unless any of the tiles covering
y and the points immediately to its left and right indicate that the cell is being
scanned. In addition, for each instruction (g, g, 0’, ¢’, D) of T, and each tile S; indi-
cating that the current symbol is o and that the cell is currently being scanned by
the machine in state g (parts (a) and (b) of the tile indication), if the adjacent tiles
to S, are as pictured below for some symbols 7 and ¢’

S,, Sj Sc

(T’, _) Sa

(0,9 s,--

(T’ _) S

then the current symbol and state indicators in the tiles S,, S; and S, are

(T’ _) Sn

(0", _-) Sy

(@ 9)s.

(T’ —) Sm

(0" ‘1) Sy

(T’, _) Sa

(In the figure we assumed D = R; the obvious analogue is intended for D = L.)

(6) Halting rules. For each halting configuration of T, and each tile S; indicating
that halting configuration, the three tiles immediately above S; and its immediate
horizontal neighbors each indicate the same current symbol and state as the tiles
immediately below them.

(0,9)s; (t', =) s,
¢ s |

(05 q) Si (T” _) Sa

(Ta —) Sp

(Ts _) Sm

(Note that, since the (e) part of the indication of a tile may change when a halting
configuration is first encountered, S,, S; and S, may not be the same as S, S, and
S,.)

The reader can verify that the statement 7, has the properties which were needed
above to show that the theory of tile models is undecidable. To show that the theory
of tile models is recursively inseparable from the set of statements which are finitely
refutable requires only a few modifications. First recall that the set of Turing
machines which halt when started on the blank tape is recursively inseparable from
those which eventually restart on the blank tape—that is, which, after some time
t, arc again scanning a blank tape in the starting state g;. Visualizing our tile




TWO-DIMENSIONAL PARTIAL ORDERINGS 137

whose width is suficient to encompass all cells used during the computation. We
need, therefore, to alter &, permitting this finite tile model to be a model of 7,
without invalidating the argument based on 7. First, the growth requirement must
be modified. Rather than asserting that immediate neighbors exist, we assert only
that they are unique. Any point not on the bottom row does have a point immedi-
ately below it and, to guarantee rectangularity,

VIV DI(x 2y Ay T 2)=@32)x t v A V> 2)

and three other statements asserting that any square with three corners in the model
has all four corners in the model, must be included in 7,. Secondly, the transition
rules must be modified so that when the Turing machine moves right or left, there
is a cell for it to move to. Finally, we add that any point whose tile indicates that the
contents of its cell is not blank must have a tile immediately above it and that any
point whose tile indicates that the cell is being scanned must have a point immedi-
ately above it unless the cell is being scanned in state g; and contains the blank
symbol and the tile is not on the bottom row. Having revised 7 ,, we need also
revise the definition of M, so that in all cases M, is isomorphically embeddable in
every model of 7 ,; thus if T, restarts on the blank tape, M, will be the smallest
finite model of T, and otherwise, M,, although infinite, may have finite width (in
case the computation of T, which starts on the blank tape is confined to a finite
part of the tape). In any case, since 7, is true in M,and M, is isomorphically em-
beddable in every model of 7 ,, we can use the argument above to conclude that the
theory of tile models is recursively inseparable from the set of statements which
are refuted in finite tile models.

The verification of (C) for tile models is as in Hanf [2]. Let A and B be recursively
inseparable disjoint recursively enumerable sets, and assume that 0 e 4. We will
describe a Turing machine 7' which will be started on the right-most 1 of a tape
which has infinitely many I’s and which is blank to the right of the cell initially
scanned; if we define C by stipulating that »n € C if and only if the ath cell to the
left contains a 1, then the left-hand portion of the tape can be thought of as en-
coding the characteristic function of C. The Turing machine T enumerates the
sets A and B and, when n is enumerated, halts if # € 4 and the (—n)th cell does not
contain a 1 or if n € B and the (— n)th cell contains a 1. Thus T does not halt when
started on C if and only if 4 = C and B < C . If we modify the statement 7 de-
scribing the action of T by saying that all bottom squares have 0's and 1’s and that
all bottom squares on the right have 0’s, thus obtaining a statement 7, and take
the conjunction with the statement —.# asserting that no halting configuration
occurs, then 7 A — 4 has models but can have no recursive model—since given
any recursive model, from the unique tile indicating a starting configuration we
could recursively define the set C of the model and thereby obtain a recursive
separation of 4 and B, contrary to hypothesis.

§2. 2dpo’s associated with tile models. We now associate with each tile model a
2dpo which will be defined by specifying a subset of the plane. Although the exact

PR T R 1. r—
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several 2dpo’s which will be associated with a tile model share many common
features.

We let Dy, Ds, Dg, ... be a sequence of finite 2dpo’s with the property that if
a # b then D, is not embeddable in D,. (Such a sequence is constructed in Lemma
4 of the previous paper.) Let 0 = my < my < my < --- < 1/4 be a sequence of
rationals converging to 1/4 and let m_; = —m;, for each i, so that — 1/4 < -+ <
m_y < m_; < mgy. A point is said to be near the lattice point (i, j) if it lies in the
following rectangle

— 71+ my

—————J +m

i + mj i + mj-.|_1
Similarly, a point is near the center of the square (i, j) if it lies in the rectangle

{(X,y)|l+ 1/2+m,-<x<i+ 1/2+mj+1and
_I+ 1/2+m,<y<j+ 1/2+m,+1}.

The 2dpo associated with a tile model will be a union of sets of points, called
boxes, near lattice points and near centers of squares. The definitions of nearness
above guarantee that given any two boxes either every point in one of the boxes
is less than every point in the other box or every point in either box is incomparable
with every point in the other box. This induces an ordering on the boxes and
guarantees that the boxes of an associated 2dpo are ordered just as the points they
are near.

The boxes placed near lattice points, called corner boxes, will always be isomor-
phic to one of Dy, Dy, ..., Dys, their purpose being simply to code the rectangularity
of the tile model. For (A) and (B) the pattern of the order types of the corner boxes
will be simply

8 9 8 9 8 9 8 9
10 11 10 11 10 11 10 1
8 9 8 9 8 9 8

10 L1 10 L1 10 11 10 11

8 9 8 9 9 8

where n represents the order type of D, and the type of the corner box near (0, 0)
is circled. For (C) the pattern of the order types of the corner boxes will be

12 13 4 5 8 9 8 9 8 9 8 9 8
14 15 14 7 6 11 10 11 10 11 10 11 10
12 13 12 13 4 5 8 9 8 9 8 9 8
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Given a tile model, corner boxes will be placed in the associated 2dpo near each
point (i, j) of the tile model and also near each point (i + 1, j + 1) for which at
least one of (i + 1, /), (i, j + 1), (4, j) is in the tile model. No other lattice points
will have boxes near them in the associated tile model.

The boxes placed near center points, called center boxes, will always be isomor-
phic to one of Dyg, Dyy, .., Disys, their purpose being to code the tile structure of
the tile model on the tiles Sy, S, ..., S,. Indeed, if the point (i, j) of the tile model
is covered by the tile S, then the center box near the center of the square (7, j) has
order type Djg.,.

This completes the description of the 2dpo associated with a tile model. With
a specified pattern of corner boxes, it is unique up to isomorphism.

It is perhaps possible to associate simpler 2dpo’s with tile models and still be
able to prove (A) and (B). However to prove (C) we make critical use of the fact
that no D, is embeddable in any D,. To see how this assumption is used, imagine
trying to decode some information from a recursive 2dpo. You would first have to
find the place where that information is stored; that is, you would have to find
elements of the 2dpo which have a certain configuration. Suppose you find such
elements—perhaps they are not the only ones with the desired configuration,
perhaps they are a part of a larger, similar, configuration denoting another address.
You cannot answer these questions in general; but if the configurations sought are
D,’s, then the doubts can be resolved. Thus, for example, if a recursive 2dpo has
the second pattern of corner boxes, then, starting from the corner boxes of types 4
and 5 on the bottom row, it is possible to find, recursively, the corner boxes of types
4 and 7 along the critical northwesterly diagonal.

We now must verify that a number of concepts concerning 2dpo’s associated
with tile models on b tiles are definable in the language of 2dpo’s, which contains
only < as a relation symbol and no other extra-logical symbols. (By “‘definable”
we mean that there is a formula in the appropriate number of free variables which
defines the described relation in every 2dpo associated with a tile model on b tiles.)

(1) {x1, xz, ..., X7y} constitutes a box.

Here 4 < i < 15 + b and f(i) is the number of elements of D,. (f(i) = 2i + 1
for the 2dpo D; of [6].) This may be expressed by a formula which asserts, first,
that some permutation of {x, x3, ..., x 7@} is isomorphic to D; as a partial order-
ing and, secondly, that any element not among {x;, x3, ..., X} stands in the same
relation to all of them. (The second assertion is required since, for example, D,
is also realized in associated 2dpo’s by selecting at most one point from each of a
set of corner boxes of the 2dpo.) The formula expressing this property is denoted
Dy(xy, X3, ..., Xs) or simply D;.

(2) x; and x, are in the same box.

The required formula, \/}%%(Qx3) --+ (Axs(y)D;, is denoted x; = x;.
(3) x is in a box of type i.

(4) x is in a corner box.

(5) x is in a center box.
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(6) x and y are in corner boxes and the corner box of y is immediately to the right

of the corner box of x.
Using our conventions about corner boxes, this can be expressed by the formula

4<7<15

V [x=iA 4<¥15y=j]/\x<y/\(Vz)[x<z<y=>(xszz~y)].
J+7 odd

This formula is abbreviated |x — [V. A similar formula defines |x 1 W . Cor-

responding formulas for center boxes are defined similarly and denoted (x) — ()

and 1 (). Formulas which express similar relationships between elements of

corner boxes and elements of center boxes may also be defined and are denoted

X P and(x) » V.

These formulas enable us to express certain structural conditions which are
satisfied by all 2dpo’s associated with tile models on b tiles; the conjunction of the
conditions stated below is denoted G;. First, G, asserts that < is a partial ordering.
Second, G, asserts (Vx) \/1}® x = i, which guarantees that any model of G, is a
union of boxes of types Dy, D, ..., Dys4; and that the ordering of the model induces
an ordering on the boxes. Next, G, says that given any corner box [i, there is at
most one corner box |[@ immediately above it, at most one corner box |b immediate-
ly below it, at most one corner box |r immediately to its right, at most one corner
box |/ immediately to its left, at most one center box (x) such that [z (x], and at
most one center box (J] such that (¥) » . Furthermore, if |1 is of type 10, for
example, and if any of |a, |, [ or |[_ exist, then they must be of types 8,8, 11, 11
respectively. (Similarly for other possible types of |u ; for (C) there are 11 such state-
ments, in some of which the types of the corner boxes are not completely deter-
mined by the type of i.) Next G, says that given any three corner boxes which
form three vertices of a square (there are four such configurations) there is a corner
box which completes the square and a center box which lies within the square so
that the five boxes are in the following configuration

la /»z
53
s

Furthermore, any center box lies within such a square of corner boxes. Finally,
there is a corner box of type 8 (or, of type 4, for (C)) which has no corner box
immediately below it.

If Pis a model of G, and [ is any corner box of type 8 (respectively, 4) which has
no corner box immediately below it and we let P* consist of those elements of P
which can be “reached” from |1 using arrows in a finite number of steps, then P*
is also a model of G,. That is to say, P* decomposes into boxes, the corner boxes
of P* will form a rectangular set with bottom row containing [, the types of the
corner boxes of P* will form a rectangular part of the required pattern, and the
center boxes of P* will be properly located, although, in general, the information
stored in them is gibberish. Our next task, therefore, is to degibberize the center
bhoxes
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each formula ¢ in the language of tile models determines a formula $ in the lan-
guage of partial orderings such that ¢ is satisfied in a tile model by certain points
if and only if ¢ is satisfied in the associated 2dpo by elements of the center boxes
near those points. The inductive passage from ¢ to ¢ begins by replacing each
formula Sy (x) by x = 15 + i, each x = y by x ~ y, each x —» y by (x] - (¥}, and
each x t y by 1 (J); the inductive steps are straightforward, quantifiers being
relativized to elements of center boxes.

Using this interpretation, we show that (A) and (B) hold. Let 77 be the conjunc-
tion of 7 ,, G, (where b is determined by ¢), and a statement which asserts that the
corner box immediately below the center box of the initial tile is of type 8. (Thus
if i is the type of the tile indicating a cell being scanned in the bottom row, the
statement is

AE=15+iA(W)F=15+i=p~x)
AQWI » X)) AT =8A @AWW T ]

Let 57 be the statement 9’?2.

. The 2dpo P associated with the tile model M, of the computation of T, on the
blank tape satisfies 7¢ and also satisfies #¢ just in case the computation halts.
Thus, if the Turning machine T, does not halt when started on the blank tape,
then ¢ = s¢ is false in P¢; if moreover, T, eventually restarts on the blank tape,
then ¢ = ¢ is refuted in the finite model Pe.

To complete the proofs of (A) and (B), we need only show that if T, halts when
started on the blank tape, then 7 ¢ = ¢ is valid. Now any model P of ¢ has a
unique center box indicating an initial tile; the submodel P* of P, generated by the
corner box of type 8 immediately below it, is isomorphic to P¢. Hence J7¢ = #*
is valid.

Thus we may conclude that (A) the theory of 2dpo’s is undecidable, and (B) the
theory of 2dpo’s is recursively inseparable from the set of statements which are
refuted in finite 2dpo’s.

§4. A statement with 2dpo models but no recursive models. To prove (C) we must
construct a statement ./ which has models which are 2dpo’s, but so that none of
its models are recursive. Recall that the statements 94 and —2#, described at the
end of §1, have tile models but no recursive models. Let G be a suitable modifica-
tion of that G, (as discussed in §2) for the b appropriate to the Turing machine
used in the definition of 7. The statement o will be the conjunction of 77y, —#,
G, and two additional statements. The first additional statement asserts that the
corner box immediately below the unique center box whose type codes both “bot-
tom row” and *‘currently scanned” is of type 4. The second additional statement is
a technicality which will simplify the proof and will be described in more detail later.

It is clear that & has a model which is a 2dpo, and, in fact, that &/ has a con-
tinuum of different countable models which are 2dpo’s; indeed, given any set C
which separates the recursively inseparable sets 4 and B, one model of 7 is that
2dpo which is associated with the tile model of the computation of T starting on the

-~ P
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cursive in a recursive 2dpo. We will use the pairwise nonembeddability of the
D,’s and the special corner boxes on the crucial diagonal—northwesterly from the
initial corner box of type 4—to recover, recursively in any model of ¢, the initial
tape of the computation. Thus any recursive model of & would give a recursive
separation of 4 and B; hence there can be no recursive model of 7.

Consider, for example, a Dy box and its adjacent D5 box. We want to find,
recursively, the Dg box adjacent to the Dy box. While there is only one Dg box
greater than the Dy box, there are many sets of points in any model of o which are
greater than the D, box and isomorphic to Dg. (For example, take one point from
each of a suitable set of corner boxes.) However, there is only one set of Dg points
which is isomorphic to Dg and is such that every point in the set is both greater than
the given D, box and incomparable with the adjacent D5 box. Thus, if P is a recur-
sive model of ., then we can, starting with the initial D; box and its adjacent Dy
box, successively find in a recursive fashion the Dg box above the D, box, the D,
box to the left of the Dg box, the D; box above the D; box, the D, box to the left
of the Dg box, etc. The easiest way to ensure that the uniqueness of these boxes is
a consequence of .o is to conjoin another statement to .o/, This statement is itself
a conjunction of four statements, only one of which is presented here:

(VOV){x=4AP=6AK 1TV =
(VZ)[{(HXZ) (BXf(7))D7(Z, X9y vuny xf(7)) ANZ<YyAZ , X}‘=> LZ._ - |Z]}

Now suppose that P is a recursive model of o and that P* represents the compu-
tation of the Turing machine T beginning on a tape which encodes a set C. We
show that C is recursive. Indeed, to determine whether or not n e C, starting with
the (unique) D, box which is a bottom box of P and the Ds box on its immediate
right, proceed, as in the paragraph above, to find the nth corner box D on the
crucial diagonal. (If # is even, the nth corner box on the crucial diagonal will be a
D, box; if n is odd, it will be a D; box.) Find the unique center box E which is
above D but is incomparable with the D5 and Dg corner boxes which are immediate-
ly above and to the right of D (not necessarily respectively). Since the center boxes
code the initial contents of the cells, £ codes the initial contents of the (—n)th cell
of the tape. Thus from E we can tell whether or not n € C. Hence C is recursive, a
contradiction. Therefore, <7 can have no recursive models, proving (C).

§5. The undecidability of the theory of planar lattices. It is evident that if all of
the 2dpo’s described above were also lattices then we would also have results (A),
(B) and (C) for planar lattices. Although they are not lattices, they are easily modi-

fied to become lattices.
(1) Instead of using D, as pictured on the left (for n = 8) use the lattice L, pic-

tured on the right.

0— { 0——— 0—o0

(s ol '
0 0 0 0
0 0

| :

0 |
00 |

0
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(The proof that L, is not embeddable in L, ifa # b is asin Lemma 4 of [6].)

(2) Place center boxes so that any two in the same row or column are incom-
parable. This can be arranged by redefining the rectangle “near” the center of the
square (i, /) to be

{(x, y)|i + 124+ m j<x<i+ 12+ m_;and
j+ 1/2+m_,<y<j+ 1/2+m_,'+1}. A

With these stipulations, all of our 2dpo’s are planar lattices, so conclusions (A),
(B) and (C) are correct for planar lattices.
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