
Chapter 1: Coloring Mathematically

Section 1.4. Using Vertex Coloring to Resolve Conflicts

Projects Project Groups

Dinosaurs Sarita, Barbara, Ravi
Spain Sarita, Roberto
Bicycles Roberto, Maimuna
Muscles Maimuna, Boris, Christie
Fairy Tales Barbara, Boris, Jason
Hockey Ravi, Christie, Jason

Figure 65

In Section 1.3, we saw how graph coloring can be used to
color maps and pictures. In this section, we will see a few of
the many other applications of graph coloring.

Imagine that eight students in your class are working on
six projects; the table in Figure 65 lists both the projects and
the students who are working on each project.

You want to arrange meeting times after school for the
project groups to meet. Each project group will need to meet
after school on Monday, Tuesday, Wednesday, Thursday, or
Friday, and, of course, you want to stay after school as few
days as necessary.

However, since some of the students are working on more
than one project, you need to be careful not to schedule those
projects at the same time. For example, Sarita is working
on the Dinosaurs project and the Spain project, so you can’t
schedule both these projects on the same day since this would
create a dilemma for Sarita.

Can you help them out? How many days will be needed
for the six projects?

One possible way of solving this problem is by looking at
each project in turn and assigning its group to meet on a
specific day. Thus you can start by assigning Monday to the
Dinosaurs group. Next you consider the Spain group. It can’t
meet on Monday since Sarita, as noted above, is in both the
Dinosaurs group and the Spain group. So the Spain group
must meet on a different day, let’s say Tuesday.

What about the Bicycles group? It can’t meet on Tuesday
because Roberto is in both the Spain group and the Bicycles
group. But the Bicycles group can meet on the same day as
the Dinosaurs group, since the two groups have no student in
common. Of course, it doesn’t have to meet on Monday; it
could meet instead on Wednesday, Thursday, or Friday.

Just reading the last paragraph aloud should make you
realize that assigning days to projects is like assigning colors
to states.

• You have to use different colors if two states share a
border.

• You have to use different days if two project groups
share a student.

Moreover,

• You want to use the smallest number of colors for
your maps.

• You want to use the smallest number of days for your
projects.
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Chapter 1: Coloring Mathematically

Section 1.7. Mathematical Reasoning

What are proofs and why are they
needed?

In mathematics, if we assert that a state-
ment is true, we need to verify that it really
is true. Claims that have not been verified
cannot be accepted as true.

An example of a famous claim which has
not been verified, although there is tons of
evidence to support it, is given in “Gold-
bach’s Conjecture” that follows these para-
graphs.

How does one verify that a statement is
true? Mathematicians require a “proof”, that
is, convincing reasoning that the state-
ment is indeed true.

It is possible to give a precise definition
of what constitutes a “proof”, and to write
computer programs that check to see whether
someone’s “proof” is really a “proof.”

However, writing proofs that can be ex-
amined by a computer program is so tedious
that essentially no mathematicians do that.

Instead they rely on their own and their
colleagues’ evaluation of their “proofs” to
determine if what they have presented is in-
deed convincing reasoning for their claims.

In this book, each time you find a claim,
make sure that you understand the reason-
ing behind the claim and, if you are not con-
vince by that reasoning, you should review
that reasoning with another student or with
a teacher to determine whether the reason-
ing is correct (and you are convinced by it)
or not (in which case you should inform the
author).

Goldbach’s Conjecture

One famous claim that has not been ver-
ified is that every even number that is 6 or
more is the sum of two odd primes. For
example, 100 = 47 + 53, 102 = 5 + 97,
104 = 7 + 97, and 106 = 53 + 53.

This claim has been checked by comput-
ers for all even numbers up to 4·1018 (that is,
400,000,000,000,000,000), and each of those
even numbers is in fact the sum of two odd
primes.

But it might be that some even number
with 100 digits is not the sum of two odd
primes.

“Every chain has chromatic number 2” is an example of
what is called an “if ... then ...” statement, because what
it says is “if a graph is a chain, then the graph has chromatic
number 2.”

We encounter “if ... then ...” statements in daily life. Some
examples are:

• If it rains, then I won’t go to the beach.

• If I study, then I will do well on the exam.

• If I eat another slice of meat loaf, then I won’t have
room for dessert.

• If you give me a kiss, then I’ll go to sleep.

We sometimes use “if ... then ...” statements that are
slightly disguised. Here are a few examples:

• I’ll go to sleep if you give me a kiss.

• I’ll only go to sleep if you give me a kiss.

• I won’t go to sleep unless you give me a kiss.

The first statement says that “if you give me a kiss, then
I’ll go to sleep,” although the order of the phrases is reversed.

The second statement says that “if I go to sleep, then [it
will be because] you give me a kiss” but doesn’t guarantee
that if I get a kiss then I will go to sleep. It sounds more like
“‘if you don’t give me a kiss, then I won’t go to sleep.”

The third statement has essentially the same meaning as
the second statement – no deal has been made.

Actually, the statement “if you give me a kssl, then I’ll go
to sleep” sounds like a deal, because it says implicitly that “if
you don’t, I won’t.” We’ll return to this question later in the
section.

“If ... then ...” statements play an important role in every
mathematical topic. In geometry, for example, “SAS” is an
abbreviation for the statement “if two sides of one triangle
and the angle they enclose have the same measures as two
sides of another triangle and the angle they enclose, then
the two triangles are congruent.”

In algebra, when we multiply both sides of an equation by
a fixed number k to get another equation, we use the fact
that “if two quantities A and B are equal, then kA and kB
are also equal.”

A more concise way of expressing this fact is “A = B
implies kA = kB.” Thus an “if ... then ... ” statement is
often called an implication.

We have come across several “if ... then ...” statements in
this chapter:
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Biographical Note

Figure 123

Kenneth Appel (at left) was born in 1932
in Brooklyn, NY. He graduated from Queens
College in 1953, served in the army for two
years and then got his PhD at the University
of Michigan in 1959. He joined the faculty of
the University of Illinois in 1961, retiring in
1993. He then spent ten years as chair of the
Mathematics Department at the University
of New Hampshire.

Wolfgang Haken (at right) was born in
1928. He received his bachelors and PhD
degrees from University of Kiel, Germany.
He solved the Triviality Problem for Knots,
a major open problem, in time for the re-
sult to be announced at the 1954 Interna-
tional Congress of Mathematicians. He per-
manently joined the Illinois faculty in 1964
(after a visiting year in 1962).

In 1976, when they finished their work
on the problem, they asked their children to
help check for errors. Armin Haken, then a
college freshman, Dorothea Haken and An-
drew Appel, then high school seniors, and
Laurel Appel, then a high school sophomore
all joined in on the fun!

“Four Colors Suffice”

“Four Colors Suffice: How the Map Prob-
lem Was Solved” is the title of a very in-
teresting and readable book by Robin Wil-
son about the history and the proof of the
Four Color Theorem. It was published by
the Princeton University Press in 2002.

How Mathematics Progresses

This brief historical account of the Four
Color Conjecture and Four Color Theorem

in 1976 by Kenneth Appel and Wolfgang Haken. (See Fig-
ure 123 and the “Biographical Note” in the side column.) In
their proof, they showed that it was sufficient to verify that
several thousand specific maps could be colored using four
colors, and then had a computer check all those examples.
Their result was newsworthy both because they solved an
important unsolved problem in mathematics and because of
their computer-assisted methodology; Figure 124 shows how
the proof of the Four Color Conjecture was commemorated
by the United States Postal Service in 1976.

Figure 124

Since 1976 the statement previously referred to as the
“Four Color Conjecture” has been known as the “Four Color
Theorem”. A reflection on this historical account is presented
in the side column (see “How Mathematics Progresses”), as is
a description of a very interesting and readable book, “Four
Colors Suffice,” about the history of the map problem.

The Four Color Conjecture:
Every map can be colored using four colors.

first appeared in print in 1878, but didn’t become

The Four Color Theorem:
Every map can be colored using four colors.

until 1976, almost a hundred years later.

One interesting feature of discrete mathematics is
that it is a mathematical domain where you can reach
the frontiers of knowledge quickly and easily. Most
of the topics in mathematics that are taught today in
schools date back hundreds, even thousands of years,
and students and teachers have no idea that math-
ematics is a living and ever-evolving subject, that
there are new problems posed, and new solutions pro-
posed every day. Here, fifty pages into this book, we
have an example of a problem that many mathemati-
cians wrestled with for the past 100 years, and that
was finally solved only 35 years ago. Later, we will
introduce problems for which no solution is known
today.
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Number of Total
Degree vertices edges

with that at those
degree vertices

2 4 8

3 14 42

4 12 48

Totals 30 98

Figure 281

Figure 282

Figure 283

Figure 284

Figure 285

In the grid graph G5,6 in Figure 280, there are five rows,
each with six vertices, for a total of 30 vertices, and there are
49 edges, 25 horizontal and 24 vertical. The 4 corner vertices
each has degree 2, the 14 vertices around the border of the
graph (excluding the 4 corners) each has degree 3, and the 12
vertices in the center of the graph each has degree 4.

Now of course we could make a table of all 30 vertices and
their degrees and add up all 30 numbers, but we can find
the sum more quickly if we use some multiplication, as in
Figure 281.

This is how the method of “degree counting of edges” works
in an arbitrary graph. We create a table whose left-most
column has a list of the degrees of vertices in the graph, whose
central column has the number of vertices of each degree,
and whose right-most column has the product of the degree
times the number of vertices of that degree. The sum of
the numbers in the right-most column is two times the total
number of edges in the graph, since each edge is counted
twice.

In the table in Figure 281 we end up with a grand total
of 98 edges. Does this equal the number of edges? No, it
doesn’t. But it is twice the number of edges, which we already
know is 49. Why is that? As in the previous section, where
we focused on regular graphs, when we count the edges at
a vertex, we are counting the ends of the edges; since each
edge has two ends, each edge is counted twice. So the total
number of edges is half the total of the degrees. This is true
in any graph.

In any graph,
the sum of the degrees of all the vertices

equals twice the number of edges.

Activity 39: Vertices and Edges

(1) Find the number of vertices and the number of edges
in each of the graphs in Figure 282, Figure 283, Fig-
ure 284, and Figure 285, first by degree counting the
edges using a table like Figure 281, and then, as a
check, by counting the edges directly, placing a num-
ber on each edge as you count it.

(2) Here’s a challenge: Draw a graph that has three ver-
tices of degree 2, three vertices of degree 3, and three
vertices of degree 4. Do you think that it can be
done?

Go to the Activity Book now, before reading any further,

and complete Activity 39.
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Chapter 3: Systematic Listing and Counting

Section 3.2: The Handshake Problem ... and Complete Graphs

Figure 405

The Handshake Problem:

If there are a number of people in a room
and each person shakes hands

with each other person exactly once,
then how many handshakes take place?

Let us first consider this problem where the room has 8
people. Then each of the 8 people shakes hands with 7 people,
so the total number of handshakes seems to be 8 · 7, or 56.
By similar reasoning, if there were 3 people in the room, then
the total number of handshakes would appear to be 3 · 2, or
6. Take a moment to think about this, and see if you can
identify the flaw in this reasoning.

The problem is that with three people – Alfred, Joe, and
Louise – there are only 3 handshakes, not 6. Alfred shakes
hands with Joe, Joe shakes hands with Louise, and Louise
shakes hands with Alfred.

How did we arrive at the answer of 6 in the previous para-
graph? We had A shake hands with J and L, J shake hands
with A and L, and L shake hands with A and J. That’s 6
handshakes altogether.

It can’t be that both answers are right!

What happened is that the total of 6 actually counts each
handshake twice – the handshake involving Alfred and Joe is
counted first as A shakes hands with J and then as J shakes
hands with A. Check it out! The handshake involving Alfred
and Louise is also counted twice, as is the handshake between
Joe and Louise.

So we have to divide the total by 2 to get the actual num-
ber of handshakes – for three people, the actual number of
handshakes is (3 · 2)/6, or 3, and for eight people, the actual
number of handshakes is (8 · 7)/2, or 28.

All of this should sound very familiar. When we needed to
find the number of edges in a graph, we added up the degrees
of all the vertices, but we then had to divide by 2, because
each edge was counted twice, once at each vertex.

Not only is this familiar – it’s exactly the same. For the
handshake problem is the same as the problem of finding the
number of edges in a complete graph!

Recall that a graph is complete if every two vertices are
joined by an edge. The graph in Figure 405, for example,
has 8 vertices each of which is linked by an edge to each
of the other 7 vertices. This is the complete graph K8 which
appeared in Section 1.10 together with other complete graphs.
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No Impact Whatsoever

The single mathematical statement that
would generate the most disbelief in the gen-
eral population is that the result of one
coin toss (or nine coin tosses) has no
impact whatsoever on the result of an-
other coin toss!

Indeed, most people believe that the op-
posite is true, or, at any rate, act as if they
believe the opposite.

This happens each time a person says
that they will bet on a certain number be-
cause it hasn’t come up in the lottery for a
month – they will say, “Its time has come!”
The fact that the number hasn’t come up
for a month doesn’t make it any more likely
that it will come up tomorrow!

This happens each time a person says
that they will bet on a certain number in
roulette because it hasn’t come up all evening.
The fact that the number hasn’t come up all
evening doesn’t make it any more likely that
it will come up in the next spin of the wheel.

Why is this misconception so prevalent
and so persistent. Probably because, on some
level, people confuse the two bulleted state-
ments in the other column. They think that
because it’s so rare for heads to come up ten
times in a row that it’s equally difficult for
that tenth coin to come up heads.

of getting a tenth “heads” is very small, that most likely the
next toss will be “tails.”

That indeed sounds reasonable, but it is completely
incorrect. The probability that the next coin will be heads
is exactly 1/2. The fact that the last nine coins all came up
heads has no bearing whatsoever on whether the next coin
will come up heads or tails!

Make sure that you understand the difference between the
following two situations:

• If you have tossed 9 coins and they have all come up
heads, what is the probability that the next coin that
you toss will also come up heads?

• What is the probability that if you toss 10 coins, they
will all turn up heads?

In the first case, 9 coins have already been tossed (and they
have all come up heads), but in the second case, no coins have
yet been tossed.

A basic assumption about tossing coins is that tossing one
coin is independent of tossing another coin and, similarly, that
the second toss of a single coin is independent of the first toss
of that coin. The coin has no memory of what happened to
it the last time it was tossed and is completely unaware of
what happened to its fellow coin.

As a consequence, the result of one coin toss (or nine
coin tosses) has no impact whatsoever on the result
of another coin toss! (See “No Impact Whatsoever” in the
side column.)

It is sometimes easier to solve problems by using the Multi-
plication Principle of Probabilities than by using choose num-
bers. Let us go back to our original problems and see how
the Multiplication Principle of Probabilities applies to them.

Let us think of selecting two cards from a deck as two
separate actions – selecting the first card and then selecting
the second card. No matter what card we select first, we are
on the right track to getting a pair ... or a flush. So the event
E1 of success on selecting the first card has probability p(E1)
= 1.

If the goal is to get a pair, then success on the second
card would be matching the denomination of the first card.
That can be done in only 3 ways out of the 51 remaining
cards – because when you remove your card from the deck
you leave the deck with only 51 cards, of which only 3 match
the denomination of your card. Thus the probability p(E2) is
3/51, or 1/17. Hence p(E) = p(E1) · p(E2) = 1 · 1/17 = 1/17,
the same answer we obtained earlier.

If the goal is to get a flush, then success on the second
card would be matching the suit of the first card. That can
be done in 12 ways out of the 51 remaining cards – because
when you remove your card from the deck you leave the deck
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Vocabulary and Notation Review

Addition Principle of Counting – this princi-
ple states that if you need to count the number of
objects in a certain collection, you can break the
collection into smaller groups and count the num-
ber of objects in each group. Then the number of
objects in the original collection is the sum of the
number of objects in all of the groups. (Section
3.1)

Addition Principle of Probabilities – this prin-
ciple states if an event E can be decomposed into
a collection of events E1, E2, E3, ... – that is, each
outcome in E is in exactly one of those events –
then p(E) = p(E1) + p(E2) + p(E3) + ... . (Section
3.5)

choose number – the choose number “n choose
m,” where m and n are counting numbers, is the
number of ways of choosing m objects out of a
group of n objects. For example, “8 choose 4” is
the number of different pizzas that can be created
using 4 of the 8 available toppings, and “18 choose
3” is the number of different ways 3 student repre-
sentatives can be chosen from a class of 18 students.
The slot method provides a way of calculating the
choose numbers. The choose numbers are also the
entries in Pascal’s triangle. (Sectiion 3.3)

equally likely – see probability model. (Section
3.5)

event – see probability model. (Section 3.5)

Handshake Problem – the Handshake Problem
is the question of how many handshakes take place
if each two people in a room shake hands exactly
one. If there are n people in the room, the Hand-
shake Problem can be represented as a graph with n
vertices where each vertex (that is, each person) is
joined by an edge (the “handshake”) to each other
vertex. This graph is the complete graph Kn, so
the Handshake Problem is equivalent to the ques-
tion of how many edges there are in each complete
graph. The answer to both problems is n(n−1)/2.
(Section 3.2)

Multiplication Principle of Counting – this
principle states that if you have a number of tasks
T1, T2, T3, ... to perform, and each of these tasks
can be performed in t1, t2, t3, ... ways, then the
number of ways of performing all of the tasks is the
product t1 · t2 · t3 · .... For example, if you have to
put together an outfit consisting of a shirt, a skirt,
and a pair of shoes, and you have 3 shirts, 4 skirts,

and 2 pairs of shoes, then the number of outfits you
can wear is 3 · 4 · 2 = 24. (Section 3.1)

Multiplication Principle of Probabilities – this
principles states that if an event E can be thought
of as a sequence of independent events E1, E2, E3,
... , then the probability of E is the product of the
probabilities p(E1) · p(E2) · p(E3) · .... (Section 3.5)

order doesn’t matter – in some counting prob-
lems, like the number of ways of selecting two stu-
dents as class representatives, order doesn’t mat-
ter, whereas in other counting problems it does –
see order matters. (Section 3.3)

order matters – in some counting problems, like
the number of ways of selecting two students as
president and secretary, order matters, whereas in
other counting problems it doesn’t – see order
doesn’t matter. (Section 3.3)

outcome – see probability model. (Section 3.5)

Pascal’s Triangle – a triangle formed of numbers,
the first 8 rows of which appear below, whose crit-
ical properties are that each exterior entry is 1 and
that each interior entry is the sum of the two en-
tries above it to the left and above it to the right.
The entries in Pascal’s triangle are all the choose
numbers – that is, the m’th entry in the n’th row
of Pascal’s Triangle is exactly “n choose m.” (Sec-
tion 3.4)

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

Figure 462

probability experiment – we can often simulate
a theoretical probability model by conducting prob-
ability experiments – for example, if three coins are
tossed, a probability model (see below) will pro-
vide a number that represents the probability that
exactly two of the coins will land “heads” – for this
example, that number is 3/8. However, we can
also obtain experimental data by repeatedly toss-
ing three coins – these repetitions are referred to
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Addition Principle of Counting

The Addition Principle of Counting, in-
troduced in Section 3.1, says that if you have
to count a number of items, you might try
to arrange the items in several groups and
count the number of items in each group sep-
arately. Then the total number of items is
the sum of the numbers of items in all of the
groups.

When we examine Figure 510 we see that
we have arranged all the Hamilton paths in
the graph into six groups, depending on the
initial vertex of the Hamilton path – i.e.,
those that start at A, those that start at B,
etc. Then we counted the number of Hamil-
ton paths in each group and recorded the
results in the table. Finally, we added the
results together to get a total of 16 Hamilton
paths.

This is a typical application of the Addi-
tion Principle of Counting.

Figure 511

From the table we see that the total number of Hamilton
paths in this simple graph is 16. (This is an application of the
Addition Principle of Counting – see note in the side column
– which is often used without acknowledgement.)

Actually, one could contend that each Hamilton path is
counted twice, once in each direction. For example, the Hamil-
ton path A-B-C-F-E-D could be considered to be the same as
the Hamilton path D-E-F-C-B-A, since each is the reverse of
the other. In that case, since each Hamilton path is counted
twice, the actual number of Hamilton paths would be 16/2,
or 8. Depending on the circumstances, you could argue that
there are 16 or that there are 8 Hamilton paths. In any case,
all of them appear in Figure 511.

Activity 64: Hamilton Paths in Graphs

(1) Draw a tree diagram of all Hamilton paths that begin
with vertex A in the graph in Figure 512.

(2) Draw a tree diagram of all Hamilton paths that begin
with vertex B in the graph in Figure 512.

(3) Draw a tree diagram of all Hamilton paths that begin
with vertex C in the graph in Figure 512.

(4) Draw a tree diagram of all Hamilton paths that begin
with vertex D in the graph in Figure 512.

(5) Draw a tree diagram of all Hamilton paths that begin
with vertex E in the graph in Figure 512.

(6) How many Hamilton paths are there altogether in the
graph in Figure 512?

Figure 512

Go to the Activity Book now, before reading any further,

and complete Activity 64.
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Leonhard Euler

Figure 551

Leonhard Euler, gazing at the drawing in
Figure 550, was one of the most prominent
and productive mathematicians in the 18th
century; he is considered to be the originator
of the study of graphs that he introduced to
solve the Konigsberg Bridge Problem.

He was born in Switzerland, and did most
of his work in St. Petersburg and Berlin. “A
Short Account of the History of Mathemat-
ics” by W. W. Rouse Ball notes that “we
may sum up Euler’s work by saying that he
created a good deal of analysis, and revised
almost all the branches of pure mathemat-
ics which were then known, filling up the de-
tails, adding proofs, and arranging the whole
in a consistent form ... Euler wrote an im-
mense number of memoirs on all kinds of
mathematical subjects.”

We owe to Euler much mathematical no-
tation, including f(x) for a function (1734),
e for the base of natural logarithms (1727),
i for the square root of -1 (1777), π for pi,
and Σ for summation (1755).

We will see another one of his contribu-
tions – Euler’s Formula – in Section 5.4.

Figure 552

The Konigsberg Bridge Problem

Legend has it that in the 17th century, the city of Konigs-
berg (now Kaliningrad) had seven bridges (see Figure 550)
that connected its four land regions (labeled A, B, C, and D
in Figure 550) built around the Pregel River. The Pregel has
two branches (Alte Pregel and Neue Pregel, that is, old Pregel
and new Pregel) and the region between these branches in-
cludes an island (region A) called Kniephof. The citizens of
the town strolled across the seven bridges on Sunday after-
noons, and wanted to know if it was possible to walk across
each bridge exactly once and return home. What do you
think? Why?

Figure 550

Activity 71: The Konigsberg Bridge Problem

Is it possible to take a stroll that will lead you to cross
each bridge in Figure 550 exactly once and then return to the
region where you began? (Answer this question for each of
the four regions, A, B, C, and D, since you could have started
your stroll in any region.)

After you have experimented with this problem for 10-15
minutes, write a few sentences presenting and explaining your
conclusions.

Go to the Activity Book now, before reading any further,

and complete Activity 71.

According to the legend, the Konigsberg citizens couldn’t
figure out a way of doing this, and sent Leonhard Euler a
letter asking if it was possible to take such a stroll. (See the
side column for biographical notes and a picture – Figure 551
– of Leonhard Euler.)

Euler answered the question by representing the map in
Figure 550 by a graph (see Figure 552) whose vertices are
the four regions (the vertex A in Figure 552, for example,
represents the island A in Figure 550) and whose edges are
the seven bridges, and showing that there was no route that
started and ended at the same vertex and that used each edge
exactly once. (We’ll soon discuss why this is the case.)
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Figure 714

Figure 715

Figure 716

Figure 717

Figure 718

• Not every graph has a perfect matching; for example,
a graph with an odd number of vertices can’t have a
perfect matching.

• A maximum matching in a graph is a matching in
which as many vertices are paired up as possible; for
example, if the graph has an odd number of vertices
and you match up all but one vertex, that’s a maxi-
mum matching.

• A perfect matching is always a maximum matching;
since it matches up all vertices, it certainly matches
up as many vertices as possible.

• If a graph has a perfect matching, then every max-
imum matching must also be perfect; if it doesn’t
match up all vertices, then it can’t be a maximum
matching since there is a perfect matching that does
match up all the vertices.

• If a graph has a maximum matching, it is entirely
possible that it doesn’t have a perfect matching; it
may be that there is simply no way of matching up
all the vertices. Even though not every graph has a
perfect matching, every graph does have a maximum
matching. A maximum matching is, so to speak, a
“that’s the best I can do” matching.

One way of finding a maximum matching in a graph is to
use a Hamilton path in the graph (if you have one). You can
walk along the Hamilton path, matching vertices as you go
– you match up the first vertex on the path with the second
one, the third one with the fourth one, etc.

If the graph has an odd number of vertices, then the last
vertex in the path will remain unmatched, but what you will
have is a maximum matching. If the graph has an even num-
ber of vertices, then all the vertices will be matched and you
will have a perfect matching.

Activity 88: Maximum Matching

(1) Find a maximum matching in each of the graphs in
Figure 714 through Figure 718. In each case, ex-
plain why your matching is a maximum matching and
whether it is a perfect matching.

(2) How many different maximum matchings are there in
each of the following graphs?

(a) The chain CHn

(b) The cycle Cn

(c) The wheel Wn

Go to the Activity Book now, before reading any further,

and complete Activity 88.
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must be that Player 1 has a winning strat-
egy. But no one has ever demonstrated a
winning strategy for Player 1!

In 2009, however, according to the Wikipedia
article on The Game of Hex, a team of re-
searchers found the winning strategy for Hex
on an 8x8 board.

Figure 742

Figure 745

Figure 746

Figure 747

When the game is over, and all 60 edges of G6,6 have been
drawn, the player whose initial is in the most boxes wins the
game.

For example, in Figure 745, neither player has won any
boxes because both players have avoided drawing the third
edge of any box. Thus far, 30 edges have been drawn alto-
gether (count them!). Since 30 is even and each player has
drawn only one edge at each turn (since there are no boxes),
it’s now Player 1’s turn.

But now whatever Player 1 does allows Player 2 to win
one or more boxes. What should Player 1 do?

If Player 1 draws the edge near the center of the bottom
row, then Player 2 will draw the fourth edge of that box, then
the fourth edge of the bottom right box, then the fourth edge
of the box above that one, then the fourth edge of the box to
its left, and would end up winning 8 boxes, as in Figure 746.
But then Player 2 would have to draw one more edge, so that
Player 1 would be able to win some boxes.

But was that the best move for Player 1? Certainly not,
because if instead Player 1 drew the edge on the left of the
bottom row, Player 2 would have won only one box.

Dots and Boxes is a tricky game! You shouldn’t assume
that your best move is always to complete all boxes that are
available to you. For example, in Figure 747, if your op-
ponent has drawn the middle edge on the bottom row, you
would be tempted to complete that box and then the one at
the right, However, if you did that, you would then have to
draw another edge, and any edge you drew would allow your
opponent to win the remaining 7 boxes.

If instead of completing the box, you drew the right edge
on the bottom row, you would leave your opponent in a
quandary, because no matter what happened you would end
up with those 7 boxes.

Thus, it is sometimes better to leave behind a “domino”
shape for your opponent, like the two boxes on the bottom
center and right of Figure 747, rather than taking those last
two boxes. Leaving those two boxes for your opponent may
avoid giving your opponent many more boxes.

Activity 92: Dots and Boxes

Assuming that both Player 1 and Player 2 make their best
moves in the game of Dots and Boxes, and that they have
reached the diagram in Figure 745 with Player 1 to move,
which player should win the game, and by what score?

Go to the Activity Book now, before reading any further,

and complete Activity 92.

In Dots and Boxes starting with a 6 by 6 array of dots,
there are altogether 5 · 5 = 25 boxes; since 25 is odd, the
game can never end in a tie. Therefore, either Player 1 has
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Chapter 5:
Bipartite Graphs, Matchings, Games, and Planar Graphs

Section 5.4. Planar Graphs

Figure 770

Figure 771

Figure 772

Figure 773

A famous puzzle is called the “Utilities Problem”. As in
Figure 770, there are three houses labeled A, B, and C, and
each has to be connected to three utilities – gas (G), electricity
(E), and water (W).

The Utilities Problem is: Is it possible to make all the
connections in such a way that none of the supply lines cross?

First of all, you should recognize that this question can be
modeled using a graph. Each of the six sites can be repre-
sented by a vertex, and each of the connections can be rep-
resented by an edge, as in Figure 771. The question then
becomes: Can you draw this graph in such a way that no two
edges cross? Another way of asking this question uses the
concept of isomorphism discussed in Chapter 2: Is this graph
isomorphic to a graph that has no crossings?

Notice that the graph in Figure 771 is drawn by connecting
each house to each utility using a straight line segment. This
version of the graph has nine crossings, that is, there are nine
places where two edges cross each other. Surely we can do
better! Indeed, in Figure 772 we have redrawn the graph
of Figure 771 so that there are only 3 crossings; that was
accomplished simply by moving the connection from C to G
and the connection from A to W. Can you reduce the number
of crossings still further?

Sometimes you can redraw a graph with crossings as a
graph without any crossings. You may remember that this
issue came up in Section 1.10, where we saw that the complete
graph K4 (see Figure 773) can be redrawn as the wheel W3,
a graph where there are no crossings (see Figure 774).

A graph is called a planar graph (pronounced “plainer”)
if it can be drawn without any crossings – that is, if it is
isomorphic to a graph that has no crossings.

Imagine that the edges of a graph are strings. One way
of ensuring that the complete graph K4 is drawn without
any crossings is to lift up one of the crossing edges so that
it is no longer in the same plane as the other edges. More
generally, any graph can be drawn without crossings if three
dimensions are used. Thus, for example, those who install the
utility supply lines ensure that no two supply lines actually
cross by placing one of the supply lines above the other, that
is, in a different plane.

But when you can ensure that no two edges cross and still
stay in the plane, that’s something special – that’s when a
graph is really “planar”. The property of “being planar” is
referred to as planarity.
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A Review of Spanning Trees

Recall that a spanning tree in a graph
is a set of edges of the graph that form a
tree that includes every vertex of the graph.
Recall also that a tree is a connected graph
with no cycles. Because a tree is connected,
a spanning tree provides a route from any
vertex to any other vertex.

On the other hand, because a tree has
no cycles, we are able to conclude from the
discussion in Section 4.5 that a spanning tree
provides only one route from any vertex to
any other vertex.

Figure 838

Figure 839

Figure 840

Figure 841

in Figure 838, Figure 839, and Figure 840, defined in each
case by the edges that are bold. Which one gives the best
solution?

We could of course argue that the best solution is the
one that links every site directly to the firehouse (as in Fig-
ure 838), since then the fire trucks could get to the other five
sites most quickly. Or we might argue that a linear arrange-
ment (as in Figure 839) is fairest, or most efficient, since you
can travel to all the sites along a single road.

But usually the decision is based on quantitative informa-
tion – the “bottom line” – what is the cost? The five roads
selected for paving will most likely be the five roads which do
the job (that is, connect all the sites) and whose total cost is
as inexpensive as possible.

We therefore imagine that the Muddy City Council first
obtains estimates for paving each of the twelve roads. These
estimates are recorded as numbers on the edges of the graph
in Figure 841; all are multiples of $100,000. Note that the cost
for paving each road depends not only on its length, but also
on other factors, such as hills, curves, and drainage; that’s
why a road that appears to be longer might involve a lower
cost than a road that appears to be shorter.

Activity 100:
The Muddy City Problem Revisited

The graph in Figure 841 represents a map of Muddy City
that shows its six critical sites and all the unpaved roads that
connect them. Each unpaved road is labeled with a number
that represents how much (in multiples of $100,000) it will
cost to pave it.

Which five roads should be paved in order to minimize the
total cost but, at the same time, ensure that you can travel
between each two sites on paved roads?

Go to the Activity Book now, before reading any further,

and complete Activity 100.

A spanning tree that has minimal weight is referred to as
a minimum weight spanning tree. Finding a minimum
weight spanning tree in a graph is referred to as the mini-
mum weight spanning tree problem for that graph. The
Muddy City Problem in Activity 100 is an example of a min-
imum weight spanning tree problem, as is the problem in
Activity 101.

A less formal way of describing the minimum weight span-
ning tree problem for a graph is to ask, “What’s the cheap-
est network?” or “What’s the cheapest way of linking these
sites into a network?” In this context, the term “network” is
treated as a synonym for “connected subgraph”.
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Figure 933

Edsger Dijkstra

Figure 934

Edsger Wybe Dijkstra (1930-2002) was a
Dutch computer scientist. He was a pro-
fessor at the Eindhoven University of Tech-
nology in the Netherlands, a Research Fel-
low for the Burroughs Corporation, and, be-
tween 1984 and 2002, a professor at The
University of Texas at Austin. An obituary
by Krzysztof R. Apt notes that:
“Through his fundamental contributions Di-
jkstra shaped and influenced the field of com-
puter science like no other scientist. Many
of his papers, often just a few pages long,
are the course of whole new research areas.
Even more, several concepts that are now
completely standard in computer science were
first identified by Dijkstra and bear names

– in this situation, we had to consider all of the possibilities
and not focus only on what seems best at the moment.

Activity 112: The Shortest Route

(1) Use Dijkstra’s Algorithm to find the route from A to
B in the graph in Figure 935 that has the shortest
total distance.

Note that, as discussed above, to solve this prob-
lem you will need to actually find the shortest route
from A to every vertex in the graph; if your solution
doesn’t consider every vertex, then it may not give
the shortest route from A to B – it may just hap-
pen that the shortest route passes through one of the
vertices that you didn’t consider.

Figure 935

(2) Use Dijkstra’s Algorithm to find the route from Pough-
keepsie to Hanover in the graph in Figure 923 that
has the shortest total distance.

Go to the Activity Book now, before reading any further,

and complete Activity 112.
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Chapter 6 – Summary

Figure 952

Figure 953

Figure 954

In Sections 6.1, 6.2, and 6.3, we considered three types
of problems related to weighted graphs. We review here the
similarities and differences of these problems and their solu-
tions.

As we noted at the beginning of Section 6.3:

• In Section 6.1, we considered the problem of finding
the shortest network that linked a number of sites;
we were looking for a minimum weight spanning
tree, as exemplified by the graph in Figure 952.

• In Section 6.2, we considered the problem of finding
the shortest circuit for a traveling salesperson;
we were looking for a minimum weight circuit that
visited each site and returned to the starting point,
as exemplified by the graph in Figure 953.

• In Section 6.3, we considered the problem of finding
the shortest route from home to school; we were
looking for a minimum weight path that started
at one site and that ended at a second site, as exem-
plified by the graph in Figure 954.

What is common to these three types of problems?

• Each problem deals with weighted graphs.

• In each problem, we are looking for a particular type
of subgraph of the given graph.

• Each problem is an optimization problem; that is, in
each case there are a number of possible subgraphs
and we want to find one that is optimal, in that the
total weight of the edges in the subgraph is as small
as possible.

How are these problems different?

• The type of subgraph that we seek is different.

– In the shortest network problem, we are looking
for a spanning tree (see Figure 952).

– In the Traveling Salesperson problem, we are
looking for a circuit (see Figure 953).

– In the shortest route problem, we are looking for
a path (see Figure 954).

• The result of our search is different.

– In the shortest network problem, a greedy algo-
rithm always gives us an optimal solution. In-
deed, there are several different greedy algorithms
that work, for example, Kruskal’s Algorithm in
which the cheapest unused edge is added so long
as it doesn’t result in the creation of a circuit.

– In the shortest route problem, a greedy algo-
rithm cannot work, for the shortest route could
conceivably include any vertex, so we have to
consider all of the possibilities. However, there
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The Huntington-Hill Method

The main feature of Daniel Webster’s method
of apportionment is that we round normally,
that is to say, if the decimal part of the num-
ber is .5 or greater, we round up to the next
highest integer, whereas if the decimal part
of the number is less than .5, we round down
to the next lower integer.

For example, if the number is 7.5 we round
up to 8, whereas we round 7.49 down to
7. The borderline between rounding up and
rounding down is always exactly in the mid-
dle – whether it’s 7.5 or 83.5 or 521.5. The
borderline is always the average between the
next higher number and next lower number
– thus, the average of 7 and 8 is 7.5, the av-
erage of 83 and 84 is 83.5, and the average
of 521 and 522 is 521.5.

In the Huntington-Hill Method, the bor-
derline is not the numerical average of the
two numbers, but the geometric average –
which is obtained by multiplying the two
numbers and taking their square root.

For example, the geometric average of 7
and 8 is

√
(7 · 8) = 7.4833, the geometric

average of 83 and 84 is
√

(83 ·84) = 83.4985,
and the geometric average of 521 and 522 is√

(521 · 522) = 521.4998.
As you can see, for larger numbers, the

geometric average is almost the same as the
numerical average, whereas for small num-
bers, the geometric average is several per-
centage points less than the numerical aver-
age.

Thus, if we are using Webster’s method of
rounding normally and using the geometric
average rather than the numerical average as
the borderline, then we are slightly favoring
the smaller states.

The Huntington-Hill method, known as
“the method of equal proportions,” is due
to mathematician Edward Huntington and
statistician Joseph Hill.

Credits

This section on “Apportionment” is based
on a presentation made by Ronald (Chuck)
Tiberio, a mathematics teacher at Wellesley
(MA) High School; Chuck was a participant
in the 1992 Leadership Program in Discrete
Mathematics at Rutgers University.

The data of the main example come from
a presentation he attended many years ago
in the Boston area.

In 1931, the method of apportionment was changed to the
Huntington-Hill method (see note in side column), which is
a slight modification to Webster’s method. The Huntington-
Hill method provides a small benefit to the small states.

Is there a perfect system for apportionment?

The answer is no. In 1982, two mathematicians, Michel
Balinski and Peyton Young, proved that any method of ap-
portionment involving three or more states that satisfies the
“quota rule” – that is, each state gets either the maximum or
the minimum – will result in paradoxes.

Activity 121: Apportionment
The population of the six towns in Monroe County is given

in Figure 996.

Town Population Rightful
# of Seats

Lincoln 4,455 8.910
Johnson 3,294
Grant 6,612

Harrison 2,424
Cleveland 3,976
McKinley 4,249

Total 25,000 50

Figure 996

(1) The County Coordinating Committee (CCC) has 50
members. Determine the rightful number of seats
each town should have. For example, since Lincoln’s
population is 4,455, and the number of people per
seat should be 25, 000/50 = 500, its rightful number
of seats is the number of times 500 divides into 4,455,
which is 4, 455/500 = 8.910.

(2) Use each of the five methods to determine how the
seats on the CCC may be fairly apportioned among
the six towns. (Note that you will need to divide by
numbers other than 500 by assuming that the number
of people per seat is more or less than 500.)

(a) Alexander Hamilton’s method

(b) Thomas Jefferson’s method

(c) Daniel Webster’s method

(d) John Quincy Adams’ method

(e) Huntington-Hill method

Go to the Activity Book now, before reading any further,

and complete Activity 120.
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