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1. INTRODUCTION

A countable group G is Rj-categorical if it can be characterized, up to
isomorphism, within the class of countable groups, by its first-order properties.
Among the classes of groups investigated for ¥,-categoricity by Rosenstein
[9] was the class of groups G' which have a normal Abelian subgroup A4 of
finite exponent and finite index; we refer to such groups as Abelian by finite
groups.

The nonlogician may wish to refer to the Introduction of [9] for a detailed
description of what Ky -categoricity means logically. Alternatively, he may
prefer to use the following algebraic condition, which, by the Basic Theorem
on Ny-categoricity (shown independently by Engeler, Ryll-Nardzewski, and
Svenonius), is equivalent to the logical condition of Ry-categoricity:

G is R,-categorical if for each n the number of n-orbits of G is finite,

(where two n-tuples <a, , @, ,..., a,> and <b;, b, ,..., b,> of elements of G are
in the same #n-orbit if there is an automorphism f of G satisfying f(a;) = b,
for each 7). See [9] also for a discussion of other articles dealing with Xy-cate-
gorical structures.

If the exponent of A4 is square-free and G/A is cyclic then, as is shown in
[9], G must be Xy -categorical. In this paper we deal with the case where the
exponent of A is still square-free but G/4 is not necessarily cyclic. In particular
we consider exhaustively the case where 4 has exponent 2 and G/4 ~7Z, X Z,,
giving necessary and sufficient conditions for such a group to be Ry-categorical.

The result in [9] quoted above can be extended so that if the exponent of 4
is square-free and all Sylow subgroups of 4 are cyclic, then G must be R,-
categorical. Combining these two conclusions, we arrive at necessary and
sufficient conditions for a group G to be ¥,-categorical if the exponent of A4
is square-free and all Sylow subgroups of G/4 are either cyclic or Z, X Z,.
(See Theorem 17.)

We turn now to the specific case mentioned above. Given that G/4 ~
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L, X Z, and that 4 has exponent 2, we will construe 4 as an S-module, where S
(the group ring) we now define explicitly. Given G = (4, d, >, we can consider
A as a vector space over F, and we can consider d and e as linear transformations
8 and ¢ of A defined by

8(a) = dad, e(a) = eqe

for all a € A. These two linear transformations generate a ring S = F,[Z, x Z,)
of linear transformations of 4, whose action on A4 determines an S-module
structure on 4. (More generally, if 4 has exponent p*, then 4 can be con-
sidered an R-module, where R = Z,i. Morcover, if H — G/A, then A can
be considered an R[H]-module, where R[H] is the group ring of H over R.
This group ring consists of all formal finite sums ¥ 7y, where each 7, €R
and each vy, € H. For further information, see, for example, Curtis and Reiner
[51)

The question of which Abelian by finite groups G, where 4 has exponent 2
and G[4 ~ 7, X 7, , are Ry-categorical can be transformed into the question
of which Fy[Z, % Z,]-modules A are 8,-categorical. (When we speak of ¥
categoricity for R-modules, we always mean that R is a fixed finite ring and
that constant symbols for the elements of R are introduced into the language
of groups to convert it into the language particular to R-modules.) Indeed,
we shall show (Theorem 17) that in general, with G, A, R, and H as above,
G is Ry-categorical as a group if and only if 4 is 8-categorical as a R[H]-module,
Since Rj-categoricity is preserved, switching categories is sensible.

In the case of F,[Z, x Z,]-modules, we are then able to determine explicitly
which ones are N,-categorical. This is made possible because of a further
reduction. Let ¥ =1 + § and ¥ =1+ ¢ denote two specific elements of
Fy[Z, x Z,] and define a relation R on A by specifying that

{v,w>e R iff for some ae A4,

%(a) = v and  y(a) = w.

Informally, <v, w) € R iff w = yx~(v).

We will first analyze structures of the form (4; R> where R is a linear relation
on the vector space 4 and obtain (Theorem 1) an explicit criterion for No-
categoricity of these linear relations (Sections 3-8). We will then show that
given an Fy[Z, X Z,]-module 4, it is Ry-categorical if and only if the associated
linear relation {A; R) is 8,-categorical (Section 9), This will give us an explicit
algebraic criterion for X,-categoricity of Fy[Z, % 7,]-modules (Theorem 13).
We will then prove the general result connecting the R,-categoricity of the group
G with the R-categoricity of its associated R[H]-module and thereby obtain
an explicit algebraic criterion for Ry-categoricity of the corresponding class of
Abelian by finite groups.
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Baur [2] has given a general classification of all N,-categorical modules.
His analysis thus gives another criterion for R,-categoricity of Fy[Z, X Z,]-
modules; although necessarily our explicit criterion must be equivalent to
Baur’s criterion, there does not seem to be a direct route from one to the other.
(See also [1].)

In the concluding sections of this paper, we will present a number of general
results concerning R-categoricity of modules. In particular, we will show
that, in the classification of Abelian by finite groups, there is no serious loss
of generality in considering only the case where A4 has exponent a power p*
of a prime p and H = G/4 is a p-group.

The notation and terminology described in this introduction will be main-
tained throughout the paper. Note in particular that S always denotes the group
ting Fy[Zy X Zy)- ' ,

2. ExamMpPLES OF NON-Rj-CATEGORICTTY

In this section, we present the basic types of Abelian by finite groups G
for which A has exponent 2 and G/A ~Z, X Z,, but which are not Rj-cate-
gorical.

It will be useful to switch categories and think of 4 as an S-module, as
discussed in the Introduction. When we think of A as a vector space, we will
also refer to it as V. Decompose V into two infinite-dimensional Fp-spaces,
V — U@ W, and let 8 be a fixed isomorphism 6: U ~ W. Given an endo-

morphism T of W, we turn V into an S-module by defining the action of
Fy[Z, X Z3] on V as follows:

xw =yw =0 for weW,
xu = 0(u) for ueU,
yu = TO(u) for ueU.

In the corresponding group, A is decomposed into B@ C. Since x = 1 + 8,
where 8(c) = d~Ycd, the equation xw = O becomes d-led = c; and similarly
yw = 0 becomes eXce = c. On the other hand xu = 6(x) becomes b(d—1bd) =
6(b); finally yu — TO(u) becomes b(e-lbe) = TO(b). Thus the corresponding
group can be described as G = (B, C, d, €) with relations that guarantee that
B + C is Abelian of exponent 2, that d?2=1, & =1, and that

dtcd = ¢, e lce = c;

d-bd — bO(b), e tbe = bTO(R).

Now it is easily seen that in ¥ we can define W as the range of » and we can
define T on W as yx~1 (more precisely, given w € W, choose u so that xu = w
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and define 7w = yu, the value being independent of the chosen). Hence
(W; T) is definable in V. Thus V is 8,-categorical as an S-module only if
(W; T is Rg-categorical as a vector space equipped with an endomorphism,

As we will see in Section 9, the archetypical non-R,-categorical structures
{W; T have the following forms:

1. For each we W there is an # such that Trw — 0, but there is no
uniform bound on #. We call such a map 7l but not nilpotent.

2. Tis asurjective shift operator; i.e., for a basis {w; | i € Z} of W we have
Tw; = w,,, .

3. T is a nonsurjective shift operator; i.e., for a basis {w;|7e N} of W
we have Tw; = w,,; .

The non-R-categorical groups G, and G, corresponding to Examples 2 and 3
can be described as follows:

Gy i e lieZy>udd, e,
Gs: <bz’czlzeN>U<da e>: N

where in each case 0(b;) = ¢; and the relations are

bb; = bjb,, dled = e e = ¢, ,
CiC; = CiCy d7bd = bye,,
bic; = c;b;, ethie = bicyyy s

bizz(;zﬁ:(ﬂ:ez:],

There is a real difference between Examples 2 and 3. The failure of N,-
categoricity in Example 3 arises already from the definability of a great number
of subspaces T"W (or subgroups (¢, |7 > ny); model-theoretically, there are
many l-types. In Example 2, there is no such class of subspaces; the failure
of R-categoricity depends on the existence of many 2-types. On the level
of algebra, this difference manifests itself in the following way. Assume for
simplicity that 7" is a monomorphism, as in Examples 2 and 3 (although we
will also deal with the more general case). Define

I ={we W| T"w ahd T~"w are defined for all }.

Then T acts as an automorphism of I. In Example 2 it is the structure d; T
which fails to be Nj-categorical. In Example 3 it is the gradual vanishing of
I =, (T"W N T-"W) = (0) that ruins R,-categoricity.

We will see in Sections 3 and 9 that these three examples do in fact exhaust
all possible sources of non-R-categoricity in extensions of Abelian groups of
exponent 2 by Z, X Z,.
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3. LINEAR RELATIONS AND Ry-CATEGORICITY

In Sections 3-8, we will completely classify Xy-categorical structures of the
form (V; R), where V is a vector space (over ‘a finite field) and R is a linear
relation on V, i.e., a linear subspace RC ¥V x V. When R is simply an endo-
morphism of V, the analysis becomes significantly simpler. However, we do
need to analyze a general lincar relation, as is evident from the discussion in
Sections 1 and 2. Recall that we intend to pass from a group G = <4, d, &
to a linear relation (A; R) via the S-module structure on 4. Thus

(v, w)eR iff for some a€ 4,

xa = v and ya = w,

where x =1+ 8 and y = | + ¢ so that xa = ad-lad and ya = aelae.
(In the examples considered in Section 2, the relation R, defined in exactly the
same way, was an endomorphism 7 of the subspace W.) In Section 9 we will
see how to reconstruct the S-module A from the linear relation {4; R) and
in Section 10 we will see how to reconstruct the group G from the S-module 4.

The analysis of an Ry-categorical endomorphism reduces essentially to the
analysis of a nilpotent map and an automorphism. More generally, we will
introduce a class of “nilpotent” linear relations, and divide the analysis of
R,-categorical linear relations into the analysis of nilpotent linear relations and
automorphisms.

The statement of our main theorem depends on a preliminary analysis
of general linear relations. Let {V; R) be a given linear relation. Define

R™0 = {ve V| There are , ,..., ¥, such that
vRx, , xRy ,..., ¥, Rx, and x, = 0}.

OR" = {v e V| There are x, ,..., ¥, such that
= x, and %, Rux, ,..., X, R%, , 2, R0}.

For m < n note that R0 C R"0 and OR™COR". Set Z = U, R"0, Z' =
U OR". Next let

I = {v € V: there is some doubly infinite sequence
{v;} C V with v, = v and v,Rv,,, for allieZ}.

Notice that Z N Z' C1I (the desired sequence {v;} may be taken to consist
largely of 0). R induces a linear relation R" on the subspace I which in turn

induces a linear relation R on I/Z N Z'. [Here (a 4+ (Z N Z')) RO+ (Zn2ZY)
iff for some ue(a +(ZNZ")), ve(b+ (ZNZ')) we have uR'v.]

Tueorem 1. With the above notation (V; R) is R,-categorical iff:
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1. For somen > 0, Z = R0 gnd Z' = OR". _
2. R is an automorphism of I/Z N\ Z' and {I|Z N Z'; R) is Ry-categorical.

3. For some integer n > 0

I ={veV: thereis a sequence v_, , U_, 1 yorey Up_1 s Vn
with v = vy and v,Rv;; for —n < 7 < n).

When V = Z + Z' it develops that condition 1 is necessary and sufficient
for the ®-categoricity of (V; R). (Condition 2 trivializes and condition 1
implies condition 3 in this case, as will become evident.) We will call R nil
iff V=24 Z', and milpotent iff R is nil and satisfies condition 1. In the next
few sections we treat the following topics:

4. Necessity of conditions 1-3 for R-categoricity of (V; RD.
Finite lattices of vector spaces,
Nilpotent linear relations.

Monomorphisms.

PN oW

Sufficiency of conditions 1-3 for Xy-categoricity of {V; R).

4. NECEsSITY OF CONDITIONS 1-3 FOR ¥,-CaTEGORICITY OF (V; R>

Using the Basic Theorem on Ky-categoricity, if (V; R) is X,-categorical,
then condition 1 evidently holds. Condition 3 is also a straightforward con-
sequence of the X-categoricity of (7; R). Now conditions 1 and 3 imply that
I|ZN Z'; Ry is definable over (V; R) and is consequently X,-categorical
if {V;R) is. We need therefore only verify that R is an automorphism
of I|IZNZ'.

It is our intention to show that R is single-valued and 1-1; it is clear from
the definition of I that R is everywhere defined and onto.

For any subspace W of R define

RW = {ve V| for some w e W, vRw}
and
WR = {ve V| for some w e W, wRv}.

Then R is single-valued if IN(ZNZ)R=ZNZ and R is 1-1 iff INn
R(ZNZ'Y=ZNZ'. By virtue of the symmetry present, we may confine
ourselves to a demonstration of the latter identity.

It is easily seen that ZN Z'CIN R(ZN Z"). The converse inclusion is a
consequence of the following two useful relations:
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() RZ+Z)CZ+Z,
() INn(Z+2Z)CZNnZ,

for, using these relations, we get INR(ZNZ)CIN RZ+Z)CIN
(Z+Z)CZNZ'. We will see that (i) is essentially a consequence of the
definitions, while (ii) follows from condition 1 above.

Verification of (i). Suppose xR(y,+ y,) with y, € Z, y,eZ'. Choose
%' €Z' such that #'Ry,. Let " = x — &' so that » = «' + x", ' € Z, and
x"Ry,. Thenx" € Z',soxe Z + Z".

Verification of (ii). We will give the verification that INn(Z+ Z")CZ.
That it is also included in Z’ is proved symmetrically. Let Z; = OR¥, so that
Z' = Uy Z';, . We will prove by downward induction on k:

(*) IN(Z+Z)VCZ+Z",.

This is true for & = n (since, by condition 1, Z', = Z) and for £ =1
its truth will give the desired result by the following little argument: if
xeln(Z+ Z') choose yel so that xRy, apply the symmetric version
(Z+ ZYRCZ+ Z' of (i) to conclude that yelI N (Z + Z", and apply (¥)
for k = 1 to get ye Z + Z';, so that we may write

y = &+ & with zeZ, ORz';.

Thus x = (x — 0) R(y — 2'}) = %, proving x € Z, as desired.
To proceed then with the proof of (x), let us fix k (1 <k < n) and assume

&+ 1) IN(Z+2Z)VCZ+ 2l

Fix x eI N (Z + Z'), with a view toward proving that x€ Z + Z.

First choose y € I so that xRy. Apply the symmetric version of (i) and (k +- 1)
to write y =y, + 9, with ¥, €Z, y,€Z'y,(. Fix ¥’ € Zy/ such that xRy,
and let " — x — &'. Then x"Ry, and y, € Z, so &" € Z. We now have x» =
¥ +x', x€Z'y, x"eZ proving xe Z+ 7', .

Thus (ii) may be considered established. We have therefore completed
the proof of the necessity of condition 2 above, and therewith the proof of the
necessity of conditions 1-3. |

5. FINITE LATTICES OF VECTOR SPACES

In this section we will discuss finite lattices % of subspaces of a vector space W.
The method used here, that of embedding a finite distributive lattice in a
Boolean algebra—referred to as ‘‘Booleanization” —is fundamental to our
study of Abelian by finite groups.
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Consider now the structure (W; &) consisting of the space W with the
elements of % as distinguished subspaces; assume that % is closed under
the operations X N Y and X 4 Y. We will refer to (W; £ as a “finite lattice
of vector spaces,” despite the possibility that infinitely many subspaces of W
may be definable in {(W; £); thus finite lattices of vector spaces, in this sense,
need not be Ny-categorical, even if the base field is assumed to be finite.

FiGure 1

The basic example, which we now present, resembles those exploited by
Baur [3]. Consider any finite lattice £ of vector subspaces of W which contains
four incomparable subspaces W, , W,, V;, V, such that W, 4 V, = W and
W; N V; =0 for all  and j. The simplést example of such a lattice is shown
in Fig. 1. Now, for each j, V; induces an isomorphism T; from W, to W,,
defined by Ty(w,) = w, iff w; 4 w,e V,. In particular T = T;'7T, is an
automorphism of W, . As is evident, the structure (W, ; T is definable over
(W3 £; thus if <W,; T) is not R,-categorical, then neither is this “finite
lattice” of vector spaces (W; #). To make this last remark nonvacuous,
we must show that it is possible for a finite lattice {W; %) as described above
to yield a non-R,-categorical (W, ; T>. Of course much more is true; If T'
is any automorphism of a vector space W, which has no fixed points, then
there is such a finite lattice (W; &), described below, which induces (W, ; T;
moreover, as will be clear later, non-Xy-categorical (W, ; T are far from rare.
[Given (W, ; T, construct {W; &) as follows: Take W, to be a vector space
isomorphic to W, but disjoint from it. Let W = W, @ W, and let @ denote .

FiGure 2
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the element of W, corresponding to we W, . Let V; = {w + Tw | we Wy}
and let V, = {w + @ | w e W,}. Then, as is easily verified using the modular
law (see below), the lattice % of subspaces of W generated by W, , W, V,,
and V, is of the correct type (Fig. 2) and induces (W, ; T.] (The reader may
wish to consider what happens if 7' is not assumed to have no fixed points.)

In this section, we will prove that a finite distributive lattice of vector spaces
is ¥ -categorical. As the example above illustrates, not every lattice of vector
spaces is distributive; however, every lattice of vector spaces does satisfy the
modular law

a-b+c)=a'b+tec if ¢c<a

The lattices of vector spaces which will arise in our analysis have the further
property that each is a slight extension of a lattice which is generated by two
chains. The fact that a modular lattice generated by two finite chains must
be finite and distributive (see Birkhoff [4]) thus implies, in view of the above
result, that each of our lattices of vector spaces will be R,-categorical.

In succeeding sections we intend to apply the proof, as well as the statement,
of the following result, which is modeled on the proof of Gritzer [7] that a
finite distributive lattice admits a canonical “Booleanization.” (It will be evident
that the proof applies to lattices of submodules of a semisimple module, as
well as to lattices of vector spaces.)

TueoREM 2. Let L be a finite distributive lattice of subspaces of the vector
space W (over a finite field). Then {W; L) is Ry-categorical.

Proof. Given an element U of a finite lattice we let U=yY{r|\v<U.
We say that U is join-irreducible if U < U or, equivalently, if U cannot be
written as U; U U, where each U; < U.

Let J be the set of join-irreducible elements U of L. For each U € J choose
a space U* so that U = U@ U* Let J* ={U*| Ue J} and let B be the
lattice generated by J*. We claim that B is a finite Boolean algebra containing L.
Then the isomorphism type of {W; B) is completely determined by the dimen-
sions of the atoms of B together with the dimension of W — (J{U*| Ue J}.
Thus {W; B) is Rj-categorical and so the same is true for {W; L).

To prove the claim, we argue first that L C B. Since L is finite and hence
every element of L is a union of join-irreducibles, it suffices to show that | C B.
We proceed by induction on the ordering of J. For atoms Ue J, U = U* e B.
For nonatoms Ue J, U is a union of smaller join-irreducible elements, so
that U e B by induction hypothesis. Hence U = U@ U* is in B. Hence
LCB.

Notice next that the sum Y {U*| Ue J} is direct, for if 35wy = 0 with
each wy € U* and if we choose U to be a maximal element of J for which
wy 5~ 0, then

wyeUNY{UX | U e, UynUL U< U,
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since L is distributive. But wy € U*, so wy = 0, a contradiction. It follows
that B is a Boolean algebra with atoms {U* | Ue J}. [

In the above argument the choice of the atoms U* is completely arbitrary.
The key point in the next four sections is this: If W carries additional structure,
it may be possible to adapt the choice of the spaces U* to reflect this structure.

6. NILPOTENT LiNEAR RELATIONS

In this section we will prove that any nilpotent linear relation is R,-cate-
gorical, and, at the same time, fully elucidate the structure of such relations.
To fix our notation, let {(¥; R> be a nilpotent linear relation. We let Z; = R0
and Z'; = ORJ for each positive 7 and j. By the nilpotency assumption, there
is an N and an N’ such that Z, = Z, for all # > N and Z',, = Z’ for all
n > N'. We may assume that N < N, for otherwise we could replace R by R~

Let L be the lattice generated by all of the subspaces {Z;|i < N} U
{Z';1j < N’} of V. This lattice is necessarily a modular lattice, and, as noted
earlier, since it is generated by two finite chains, is finite and distributive.
Hence, by Theorem 2, the finite lattice {V; L) of vector spaces is X-cate-
gorical. This conclusion is not sufficient for our purposes, however, since
the action of R in the linear relation {(V; R) is largely suppressed in the lattice
{V; L) of vector spaces. Thus the result that (V; L) is R,y-categorical does not
yield the result that (V; R) is Rj-categorical. To get the desired result, we will
Booleanize the lattice (V; L) more carefully than was done in the proof of
Theorem 2.

Before carrying out this Booleanization, we review the structure of the
modular lattice F(N, N') freely generated by two chains:

C: € < gy < o <y,
C: <y <<y

Let ¢;; = ¢; N ¢y for i < N, j < N'. As illustrations, we exhibit the lattices
F(2,2) and F(2, 3) in Figs. 3 and 4, respectively. As these diagrams illustrate,
the join-irreducible elements are precisely the elements ¢;, ¢;, and ¢,;. In
Birkhoff [4] the free lattices F(N, N') are described in some detail, and, in
particular, a “‘normal form” for elements of F(N, N') is given: Every element
of F(N, N’) is a union of the join-irreducible elements ¢;, ¢';, and ¢;; .

As we will see, the lattice L generated by the two chains {Z; |1 <{ < N} U
{Z';11 <j < N'} cannot be freely generated by these chains. However,
as L is a homomorphic image of F(N, N'), its join-irreducible elements lie
among Z;, Z';, and Z; = Z; N Z';. (This is easily verified, remembering
that any element of a finite lattice is a union of join-irreducible elements.)
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Fic. 4. F(2,3).

In the free lattice F(N, N') on the chains C and C’ we have the following
identities:

(1) épa=cVen;
@) Cpa=c3Yeygus
(3) by =rciy Y

(where, by convention, ¢, and ¢y, and hence also ¢, ; and ¢; ¢, are all 0).
Hence in the lattice L we have the following identities:

(1) Zt+1 =Z;+ Zig.ns
(2) 2 ‘v =2+ Zygs
B) 2u=Z s+ Ziya

(where, by convention, Z,, Z’y, Z, ;, and Z; , are all 0).
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Note that in writing these identities we do not presuppose that Z;; (or Z;
or Z';) is actually join-irreducible. In fact, we will now show that L is a proper
homomorphic image of F(N, N') by proving that, under certain circumstances,
Z;; = 2;; . Then Z,; will not be join-irreducible and from (3) we conclude that

Zy =2 159 254

Proof. Recall that we have assumed that N < N'. Let us first suppose
that 4,7 > 1. Fix x€ Z;. Then, by definition of Z;, there are elements
Y1 s Vg see0r Vi and 2, 2p ..., ¥y such that

(*) ORz;_,R -+ Rz;RxRy,R - Ry, ;RO0.

By assumption (N — 7 + 1) < js0 2y _;4; exists, and, by (¥), 2y_;4q € R¥¥10 =
R¥Q. Thus there are N — 1 elements

By seeey Enveg s X1 5 51 5000y Si—g
satisfying
(x%) Zy_iaRty_R -+ Rt;Rx; Rs; R -+ Rs; ,RO.
Subtracting (xx) from () yields
OR(2y_; — ty_i)R - R(z, — t;) R(x — x;) R(y; — ;)R -+ Ry; 4 RO.

Thus (x — %) € Z; y_441 C Z; 51 (since N —i+ 1 <j). Since €2, ,;,
we can conclude that ¥ = (x — %)) + %€ Z;;, ., + Z,, ;.
For i =1 or j = 1 the proof is similar. We state these two cases more
explicitly:
for > N, Ziw =2y 41,
for j>N, Zy;=23.- |

This lemma merited our attention because it makes explicit all relations
which fail in F(N, N’) but hold necessarily in L. In other words, if we let
L(N, N') be F(N, N') modulo the relations of this lemma, then in general L
is a homomorphic image of L(N, N’), but under certain circumstances it will
be precisely L(N, N'). This may be seen by examples. The reader can verify
that the lattices pictured in Figs. 5 and 6 are L(2,2) and L(2, 3), and that,
in the example {(V; R) given below, the lattice L of subspaces is precisely
L(2, 3). As this analysis is not at all essential for the sequel, however, we will
not dwell on it. [Example: Let 7 be a vector space over F, generated by
{a,,85,05,b,,b,,% 9,2} and let R be generated by b.Ra,RORxRyRz,
ORb,Ra,R0, and ORa;R0.]
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Fie. 5. L(2,2).

Fic. 6. L(2,3).

It is also useful to look at L(3, 3), particularly with reference to Lemma 4
below. Fortunately, although F(3,3) is not nicely representable in three
dimensions, its homomorphic image L(3, 3) is, and has the representation
shown in Fig. 7.

Fic 7. L(3,3).

In order to prove that all nilpotent linear relations are N,-categorical, we
will Booleanize the lattice L; more precisely, we will embed L in a finite Boolean
algebra B of subspaces of V' in such a way that the action of R between atoms
of B is easily described. We will be more precise momentarily, but it will be
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clear that the structure of {V; R) is determined by the dimensions of the
atoms of B and by the action of R between these atoms.

We have discussed the Booleanization of a finite distributive lattice in
Section 5. If we were to simply carry out that construction, we would need
only choose relative complements

H; to 2, in Z;,
H’j tO Z’j in Z’j 3
and

H;; to 2 in Z,

2
which would serve as the atoms of a Boolean algebra. (We would, of course,
omit those which are zero.)

In our situation, however, we need to Booleanize the lattice, and, at the
same time, analyze R. The action of R forces further non-lattice-theoretic
relationships among the H;, H';, and H;;. Knowing these relationships in
advance (Lemma 4), we will carefully select the spaces H;; and we will decompose
the spaces H; and H'; into spaces {Gy;, |i < kB << N}and {G';, | <k < N}
The spaces H;;, Gy, and Gy, will serve as the atoms of a Boolean algebra B
which will include the lattice L; furthermore, because of our careful selection,
the action of R between any two of the atoms will be essentially trivial.

Lemva 4. (1) If i > 1 and j < N', then R induces an isomorphism R:
ZiylZiy = Z g 52 0 -

(2) If i > 1, then R induces a monomorphism R;: Z,./Z,- —Z |2, .
(3) Ifj < N, then R induces a monomorphism R';: Z';, |2, — Z'5]2'; .

Proof. We confine ourselves to the proof of clause (1). The other clauses
are treated analogously.

It is immediate from the definitions that for any x in Z;; there is a y in
Z;_y ;11 such that xRy, and conversely for y in Z;_; ;,, there is an x in Z;; so that
%Ry. To show that R induces an isomorphism Ry;: Zy;/2;; =~ Z; 1 ;1] 2 151
we need only show that

(*) 24RO Zy 51y = 2y g
and
(*%) R2; 41N Zy = 2y,

By virtue of the symmetry inherent in the situation, we may confine ourselves
to the treatment of (x). Now since 2y=2Zi i+ Z; ;. and 2y, ., =
Zi g9+ Ziyy, it is clear that Z,, ;. CZ,;R. Suppose conversely that
yeZ4;RN Z;_y ;41 - Fix x € Z,; so that xRy. We may write more explicitly

X =% 4 %, ¥ €Z; 4, %€ 255, .
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This being so, we may find y, , ¥, so that

xRy, , xRy, , NEZi s> Vi€ Z; ;-

We know xRy and xR(y, + y,); we conclude that

OR(y — (31 + 32))s so y—(nt+y)eZ.

By assumption y € Z,_; ;.1 ,so certainly y, ¥, , v, € Z,_, . Thusy — (y; + y,) €
Z; 31CZ 1 ;C 2, 1 ;.1; but of course y, +y,€2;, ,,, so finally ye
Ziasa- |

It is now an easy matter to choose the desired spaces and to describe the
action of R on these spaces. We start with the spaces H;; . For { > N, we have
Z,; = 2, and Hy; = 0. For i < N, let H;; be any relative complement of 2,;
in Z,; and use R to construct H, , ,, H; ,,..., Hy; according to Lemma 4.1.
In more detail, if a basis B for H, ,,., has been selected, then select B! nC
Z,; 4 1,143 S0 that R induces a 1-1 correspondence B, «> B}, and so that
the space H,_, , ., spanned by B:,, is a relative complement of Z,_,_, ,,, in
Z, 4 _1.t42 - Then R induces an isomorphism from each H; ;. to H,_; | ,..;
R also takes each H,; to 0 and takes O to each H;; .

This situation can be represented pictorially as in Fig. 8. Here R maps
each space isomorphically onto the one below it; each space on the bottom
is mapped by R to 0 and each space on the top row is included in Z’ .

o
«—O

JU | <o
o
“o
<

IH11 Hyy

[ ¥
0

1] Y41 N1

==
o

o
o

I

JliL.UL

o ¢
0
Ficure 8

We next choose a relative complement Hy of Zy in Zy, with basis By .
Then proceeding by downward induction on 7, given a relative complement
H,,, of Z,,, in Z,,, with basis B;,,, we construct a relative complement H,
of Z; in Z, with basis B, as follows: By Lemma 4.2, we choose 4; C Z; so that
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R induces a 1-1 correspondence B;,, <> A;, and then we extend 4, to a basis

B, for a complementary subspace H; of Z,in Z;.
We now decompose Hy , Hy_y ,..., Hy as follows. For each i, let G; ; be the

subspace of H,; spanned by B; — A;. Then define Gi1.i5 Gigi v Grot
inductively by stipulating that G,_, ; is the image under R of Gy, ; in H,,.

Syn Hy
. H
R N-1
.
G
2’2 - - (']
| 1,1 61,2 G H
0 o 0 o 0

Fi1GuURE 9

This situation can be represented pictorially as in Fig. 9. Here R maps
each space isomorphically onto the one below it; each space on the bottom
row is mapped to zero but the spaces on the top are not R-images at all. Note
that the direct sum of the spaces in the ith row is H, for each ¢, 1 <i << N.

o o
P11 Pl
[ 1,1{%,2| %3 | €4 G Hy
N ©21%,3|%p| ¢ -+ o G 1y
l 63 3| %4 63
G

Ficure 10
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Similarly, using Lemma 4.3, we can define H ‘sforj = N’,..., 1 and decompose
each H'; into {G';;, | j < k < N'}, obtaining the pictorial representation shown
in Fig. 10. Here R maps each space isomorphically onto the one below it;
each space on the top row is included in Z’; but the spaces on the bottom
are not in the domain of R at all. Note that the direct sum of the spaces in the
jth row is H';.

At this point, we state the structure theorem that we have proved for nilpotent
linear relations.

THEOREM 5. Let (V; R be a nilpotent linear relation, where Z — Zy,
Z'=Z'y, and N < N'. Then V can be written as a direct sum of spaces
Hyll <i,;i4+j<N+1}, {Gyli <k <N}, and {G's|lj <k <N}
so that '

(i) R maps H,; isomorphically onto H,_, ;. for all j and all i > 1;
(1) R maps Gy, isomorphically onto G,_, ,, for all i > 1 and all k > i;
(iii) R maps Gy, isomorphically onto Gy,  for all j < k;
(V) Z; =Y @{Gult<it<k<NIOTDH,; |t <iji+]j<
N+ 13
) Z;=Y0Gult<jit <h<SNIOL ®Hyuls <jii+j<
N+ 13
(Vi) Zy =YX ®{H, |t <i,s<ji+j<N}
(vil) R is completely determined by (i)~(v), in the following precise sense:
If x =% {x,|te T} is the decomposition of x and if, whenever
either x, € Hy; for somei > 1 or x,€ Gy, for somei > 1 or x,€ Gy,
Jor some j < N, then y, is defined to be the corresponding element

of Hi_y 5415 Gisyp» 0r Gy, 1, and otherwise y, = O; then xRy iff
(y —X{nlteThez,.

Furthermore, the structure {V; R) is completely determined by the dimensions of
the spaces

{Hu |t <N}U{G;[i < N}U{G';|j < N}

CorOLLARY 6. Let (V; R) be a nilpotent linear relation, where V is a vector
space over a finite field. Then {V; R is 8,-categorical.

Proof. Since each of the spaces Z;, Z';, Z,;, 2;, 2';, and 2,; is definable,
we need only, by Theorem 5, write axioms which give the dimensions of
Zn|2y , Z' |2y, and Zy,) 2, for each j < N over the given finite field, as well
as the codimensions [Z; ,/Z; ;: R[Z,/Z;]] and [Z';/2";: RJZ;42::0 1
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CoroLLARY 7. Let (V; R) be a nil linear relation; that is, V =Z 4+ Z'.
Then {V; R) is Ny-categorical if and only if there is an n such that Z = Z,, and
z=2,.

7. MONOMORPHISMS

In the preceding section we analyzed nilpotent linear relations. We now
study the other extreme case of lincar relations: monomorphisms. Thus let
(Vi R) be a linear relation where R is a monomorphism; by this we mean
that R is a isomorphism from one subspace of V' to another subspace of V.
In keeping with our earlier notation, set

I ={veV |forallneZ, R is defined}.

Notice that Z and Z’ are 0 and that R induces an automorphism Ronl In
the special case where R is a2 monomorphism, Theorem 1 becomes

TuroreM 8. (V; R) is Ry-categorical iff
(i) For some integer n > 0,1 = {v [ R*v is defined}, and
(i) <I; R) is Ry-categorical.

Proof. 'The necessity of conditions (i) and (ii) was verified in Section 4 in
greater generality. (Note that since R is a monomorphism, condition 3 of
Theorem 1 implies (i) here.) We deal here with the question of sufficiency.

For 0 < k, I define

Vi ={veV|R'and Ry are defined}.

Ifk - [ = n,then V,; = I. Wearc intercsted in the lattice L of spaces generated
by {Vy.. |k 1 = 0} Since Vi = VioO Vo, and since Vg2 Vi and
Vor2 Virea, this lattice is generated by the chains {V,,|% = 0} and
(Vi | 1 = 0}. In particular it is finite and distributive, and the join-irreducible
elements are among {V,, |0 < &, [}. Define Vs = Vi + Vi - In the
free modular lattice on {V o} and {Vy,}, V3, covers Pp.. InL, V., covers
or equals 7, . We will Booleanize L by choosing relative complements Ky,
of Vp,in Vi .

As in Section 4, R induces isomorphisms Ry, ;: Vi1 Vier = Vi1l Vit 1a1
for I > 1. Thus if we let K, be a relative complement of V4o in Vi, then
for each I < k we may take R'K, as a relative complement K; ;_, of Ve
in V. ,

We thus obtain the pictorial representation shown in Fig. 11. Here R maps
each space isomorphically onto the one below it.
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o |io_,o Kio[K20 K30 [<n-10
Koa|Kii |Kay S0 e K-z,
Ko,2 [Ki,2
Ko,3 N
[
KD,I"
Ficure 11

We can think of this structure in the following way: Since R is a mono-
morphism, every element # of ¥ is a member of a unique maximal R-chain of
elements of V; this R-chain either has the form xR, Rxg -+ x; Rx,, ,, for some &,
0 <k <Norelseitisa two-way infinite chain. In particular, if ¥ = %Ky,
then the maximal chain is of length £ + 1 and ¥ €Ky, % €Kiy 1 ey ¥ppq €
K5 - Since K, represents the part of ¥ which is unaffected by R, the only
part of V' missing from Fig. 11 is I.

Thus the linear relation <V; R} is completely determined by the dimensions
of the spaces {K, , |0 <k < N — 1} and the definable substructure (I; R).
Hence, since we are assuming that <I; R} is Kj-categorical, the same is true
for (V5 RY. |}

To complete this section, we present a criterion for the X,-categoricity of
automorphisms.

THEOREM 9. Let I be a vector space and let R be an automorphism of I. Then
the following are equivalent:
(1) <I; R) is Ry-categorical.
(2) There is an integer m > O such that given x € I there is an s < m and
elements x, , %, ,..., x; of I such that

xRx,Rx, +-+ x,_, Rx ,Rx.

(3) Thereis a polynomial p(t) in F(t] such that p(R) = 0 as an endomorphism
of L

Proof. 'That (1) implies (2) is a consequence of the Basic Theorem on
R,-categoricity. If (2) holds, then p(R) = 0 where () =TThcmt® — 1, so
that (3) holds.
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Finally, assume that (3) holds. We view I as an F[t]-module in the usual
fashion, namely, by setting ¢ - ¥ = Rx for x € I. Then I is a module over the
principal ideal domain F[t] and p(¢) annihilates I. Under these circumstances
it is well-known, and easily proved, that I is a direct sum of cyclic F[t]/(p(t))-
modules. (This is analogous to the case of Abelian torsion groups of bounded
exponent.) Since there are only finitely many distinct cyclic F[t]/( p(¢))-modules,
it follows that {I; R) is ¥,-categorical. We refer the reader to Kaplansky [8],
where such situations are discussed algebraically, or Eklof and Fisher [6],
where the case of Abelian torsion groups is discussed, or Baur [2], where this
is a consequence of the general result. ||

CoroLLARY 10. The monomorphism (V'; R) is Ry-categorical iff

(i) For some integer n = 0, I = {v | R"v is defined}.

(ii) For some integer m = 0, given any x € I there is an s < m and elements
Xy 5 % 5.0, Xy Of I such that xRx Rx, +-- x,_ Ry Ru.

8. SurriciENCY OF CONDITIONS 1-3 FOR ®;-CATEGORICITY

Let {V; R) be a linear relation. Let Z = {J R*0 and let Z' = |JOR® be
as before, and let I be as before. In addition, let D = {v | for some v', vRv'}
be the domain of R and let D' = {v | for some o', v'Rv} be the range of R.

In this section, we will put together the results of Sections 6 and 7 to obtain
a proof of Theorem 1. That they can be put together is a consequence of the
following lemma.

Lemma 11. Assume that Z = Zy and Z' = Z'y:. Then the lattice L of
subspaces of V generated by {D, D', I, Z, Z'} is finite and distributive.

Proof. Consider the modular lattice L' on the generators {4, d’, i, 2, 2’}
subject only to the relations

2 < d, 2 <d, i<dnd, iNn(z+2)==z2n%.

We claim that L is a homomorphic image of L’ and that L’ is finite and dis-
tributive.

Now L is a homomorphic image of L’ since we have proved that all of the
relations above are true in L—the last having been derived in Section 4 from
the assumption that Z = Zy and Z' = Z'-.

Turning now to the structure of L', we recall that the structure of the lattice
L, generated by the two chains {3, d} and {2, d'} is as shown in Fig. 12. To
this lattice we must add an element ¢ which is below d N d’ and whose intersec-
tion with 2 + 2’ is 2 N 2’. Having added 7, we must also add a + ¢ for each
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acL,. But for a > dNd’, a+ ¢ must be a; so we need only add a + 7 for
2N 2 < a< 2+ 2. We claim that the resulting set K is closed under N,
and therefore it is identical with L',

Ficure 12

Thus we need to verify that
(i) ‘ifa,b<z+z’,thenaﬂ(b+i)eK;
(i) fa=dnd,b<z4 2, thenan (b +i)ek;
(i) ife,b<z+ 2. then(e+i)N(d+1i)ek.
As to (i):

anb+i)=(@n(z+2))NbB4+i)
=an[(z+ )N b+ 1)]
=an[b+ ((z+ 2)ni)] (by modularity)
=anbh+(zNz) =anbd.

As to (ii): an (b + i) = (@ N b) + 7, by modularity, since i <dNd' < a.
As to (iii):

(@+i)n@d+i)=(@n(d+i)+i (by modularity)
=(anbd+:i by

Hence K is identical with L', It is easily seen that L’ has the representation
shown in Fig. 13. The verification that L’ is distributive is direct. Hence its
homomorphic image L, the lattice of subspaces of V generated by {D, D', I, Z, Z'}
is finite and distributive. [}

We will now Booleanize the lattice L which is a homomorphic image of the
lattice L' pictured above. We first Booleanize Z + Z’ as in Section 6; that is,
we restrict our attention to the nilpotent linear relation {Z - Z’; Ry) (where
Ry is R restricted to Z + Z’) and imbed the lattice gencrated by the two chains
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of subspaces {Z; | i << N} and {Z'; | j <X N'} into a Boolean algebra of subspaces
of Z 4 Z’, taking care that the action of R between any two atoms is essentially
trivial. By referring to Figs. 8-10 in the proof of Theorem 5, one can see that
the spaces D N Z’ and D' N Z are in this Boolean algebra and therefore the
same holds true of the nine possible subspaces of Z + Z’ in the lattice L.

G5

Ficure 13

We next choose a complement of Z N Z’ in I. Since we are assuming that
the linear relation R induced on I/Z N Z’ is an R,-categorical automorphism,
we can apply the analysis of Theorem 9. That is, there is an m such that
NZNZ' = @Y ,cm I, where each I, is a direct sum @Zﬂg’ I, ; of isomorphic
cyclic F(t)-modules. (Note that K(s) may be infinite.) Furthermore, I, , has a
basis [d,],..., [4,] such that )

(+) (1] R[dz] vt [dg] R[dq] R[daﬂ]r

where [d] denotes d + (Z N Z’), and where [d,,,] is a linear combination
Y i<q %[d;], with each o, € F.

For each s <{ m and each ¢, 0 < t << K(s), we will define a subspace C,
so that I =(ZNZ') DY ¢ C; where each C, = @Z{S;) C;.;, and such
that each C,, is invariant under R—that is, for each ve C,, there is a unique
v’ € C,,; with vRv". Furthermore we will have (C,,; R) ~ I, ,; R>.
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Indeed, given d,,d, ,..., dgyy as in (¥) above, we can choose ¢, , ¢y ...y €o11
so that ¢;€[d;] for each ¢ and ¢;ReyRcy “** ciReqiq - In particular, ¢,y =
Y i<q iC; + 2 for some z € Z N Z’. Suppose more particularly that ze ZN 27,
with 1 < J < N',and that¢; , ¢ ,..., €541 have been chosen so as to minimize J.
Fix 2y, 8g e Zga1 With 2443 = 2, ZIR%HR - Rz, Ry, and 2,€ 27545 ()
for each i for which J+7—(¢+ 1) >0 and 2z, = 0 for each ¢ for which
J+i—(g+1) <O0. Let ¢, = ¢; — z; for each i. Then eRe, - ReRe,,, ,
each [¢;] = |d)], and e, = 3 ae; + 2/, where 2 =3 a;2; eZ,if J>1
and 2’ = 0 if ] = 1. Hence J =1 and ¢, =3 oe; . We now define C, ;, =
ey, €3 5.y €5 and note that it is invariant under R as specified. (Note that if
xeC,, and ye C,; and xRy, then xRz iff OR(y — =) iff y —2eZ’}; thus
the relationships between elements of C,; and other elements of V" are com-
pletely specified since each C,; is invariant under R and since Z', is specified.)

The remaining part of the lattice L’ is represented in Fig. 14, where N =
I+Z+Z)Yn (DN D)

Ficure 14

We note that if ¢cRd and either ¢ or d is in Z + Z', then so is the other, and
thus the only R-relations involving elements of Z -+ Z' are with other elements
of Z + Z'. For example, if ce Z + Z' and cRd, we write ¢ = a + b where
acZand be Z'. Since a€ Z, aRa’ for @ € Z. Hence bR(d — a’). Since be Z',
d—aeZ. Butthend =a +(d—da)eZ+ 2"

Similarly, if ¢Rd and either ¢ or d is in I 4 (Z + Z'), then so is the other.
For example, if ceI 4+ (Z 4 Z') and cRd, then we write ¢ = a + b where
acl and beZ + Z'. But aRa' for a' €I so bR(d — a'). By the above, since
beZ 4 Z' also d—d e€Z+Z. Hence d=a +(d—a)el+(Z+Z)
Moreover, we see that if cRd where ¢, del + (Z + Z'), then we can write
c=¢+c,+cgandd = d, + dy + dy where ¢, ,dy €1, ¢, €2, A A A
and ¢,Rd, , c,Rd, , c;Rd; .

Thus the only R-relations involving elements of I+ (Z -+ Z') are with
other elements of I 4 (Z + Z'); moreover, any such R-relation is a consequence
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of R-relations between elements of I, between elements of Z, and between
elements of Z',

We let P denote I + (Z + Z’). Let W = V|P and let R be the linear relation
induced on V/P by R—thus [c] R[d] if for some u € [c] and some v € [d] we
have uRv. The domain of R is {[x] | x € D} and the range of Ris {[y] | y € D'}.
Furthermore, if [x] R[y,] and [x] R[y,], then [0] R[y] where y =y, — ¥,.
We claim then that y € P so that R is single-valued on its domain. Indeed,
if dR(y + d’) where d, d’ € P then, by the remarks above, y 4 d' € P and hence
y € P, Similarly R is 1-1 on its domain, so that {W; R) is a monomorphism.

We may thus apply our analysis of monomorphisms in Section 7. Suppose
first that

[1] Rica] *** [em] Rlemo]-

We claim that there are elements d,,d,,..., d,,, dp,,, such that [d;] = [¢;]
for each 7 and such that d,Rd, - d,,Rd,, . . To verify this, we show by induction
on s, 1 < s << m+ 1, that there is a sequence 4,°, d5°,..., d;* such that [d;°] =
[¢;] for all i < s and such that d,°Rd,® -+ d_,Rd . For the basis step s =%,
we can take d;! = ¢; . For the induction step, assume that 4,5, d,°,..., d,® are
as required. Since [d,°] R[c,,,], we get (d,* + p) R(c,41 + p') where p,p' € P =
I+ Z)+2Z.Setp=p + p, where p €l + Z, p,e Z'; now p,Rq for some
gel + Z, so that (d,° + p,) R(cyy, -+ p's) where p,eZ’ and p’y, € P. Since
p.€2Z’', there are ¢, ¢s,..., .y all in Z' such that ¢,Rgq, -** q,_,Rp,. Set
ditt =ds4 g fori <s—1,d5; =d+ py, diil = cgyy + 'z Then the
induction hypothesis continues to hold, so we arrive at d,,d,,...,dp, , dpiy
with the desired properties.
It now follows that if

[e1] Rleg] *** [em) Rl€pmia)s then m < 2n.

Iﬁo.o Pio [P20 [Fao [ Ponti0
i Paut (P, P2n,1

P22 {P3,2

P33

T

¥ lii-"i:

Figure 15
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(Recall that condition 3 of Theorem 1 states that given {v; | —n <7 < n}
with v,Rv;,, for —n < i < n, then 9, l.) Thus the invariant subspace cor-
responding to I in the monomlrphisms considered in Section 7 is here (0).
Hence (W; Ry can be represented by Fig. 15. Here R maps each space
P, ; = P, ;/P isomorphically onto the space below it.

We carefully select for each s <{2n + 1 and each j <s a complement

K, ;of Pin P, ;. Indeed, given a basis {[c“] | a € 4.} of P, ofP, we find for each
a € A a sequence

(] = [e1°] Rle"] -+ [€5-1] Rles’]

with each [¢;*]€ P,;/P and then find elements 4,2, dp%,..., d;* so that each
[4] =[¢;,] and so that d*Rdy* - d2. Clearly Ko =<dy*|acd,) is a
complement of P in P, ; furthermore K, ; = {d;*| e € 4,> is a complement
of Pin P, ; . This completes the Booleanization since we now have a complement
of Nin D N D', namely, > @ {K, ;|0 <j < s}, a complement of (D N D’) +
(N4 Z)in D', namely, > @{K, |l < s < n}, a complement of (D N\ D) +
(N + Z)in D, namely, 3" ®{K,,|1 < s < n}, and a complement of D + D’
in V, namely, K,

Summarizing the proof of Theorem 1, we see that if {(V; R) satisfies 1-3,
then the structure of (V; R) is completely determined by the following
invariants:

(1) For each < N, the dimension of Z,/Z;_, , .

(2) The dimension of Zy/Zy .

(3) For each 7, 1 < i < N, the dimension of the complement of the
image of Z;/2; in Z,_;/2;_, under R.

(4) The dimension of Z'y/[2'y

(5) For each j, 1 <j < N’, the dimension of the complement of the
image of Z';/2'; in Z';_,/2';_, under R,

(6) For each s < 2m, the number K(s) < 8, of isomorphic C, s which
comprise C, .

(7) The dimensions of the spaces {K,,|0 << s < 2n 4 1}.

Thus (V; R) is completely determined by specifying these invariants and
the action of R as described in this section. Hence (V; R) is R,-categorical. ||

9. ®,-CaTEGORICAL GROUPS AND MODULES
In the preceding sections, we have obtained an explicit algebraic criterion

for the N, -categoricity of linear relations {(V; R). Recall that with each group
G = {4, d, ¢), where A has exponent 2 and G/4 ~Z, X Z,, we associated
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a linear relation {(4; R) via the Fy[Z, X Z,]-module structure of 4. We will
now show that the linear relation {(4; R) is R,-categorical if and only if 4 is
N,-categorical as a F,[Z, X Z,]-module. By the general theorem connecting
X,-categoricity of groups with N,-categoricity of the associated modules
(Theorem 17), we can deduce that G is R-categorical if and only if {4; R}
is ¥,-categorical.

Recall that in preceding sections A is viewed as an Fy[Z, X Z,]-module
where F,[Z, X Z,) is the group ring generated over F, by the two linear trans-
formations 8 and ¢ defined by

3(a) =d'ad  and e(a) = e lae.

We can also regard Fy[Z, X Z,] as generated by x =1 +3 and y =1 + <
Note that 42 = y2 = 1 and xy = yx, so that S = F,[Z, X Z,] is also Fy[x, y]/
(x2, %) and an S-module is just an Fy-vector space equipped with two commuting
nilpotent transformations of order 2.

We passed from the S-module 4 to the linear relation R by specifying that

{v,w)€ER iff for some a€ 4, v = xa and w = ya.

Thus, informally, the action of R can be thought of as yx~1, so that in passing
from the S-module 4 to the linear relation {4; R> we have lost the actions
of x and y although we have added the “product” action yx~!. We will now
see that what has been lost does not seriously affect the analysis of the preceding
sections and indeed does not affect R,-categoricity at all.

TuroreM 12. A is an Ry-categorical S-module if and only if {A; R) is an
Ry-categorical linear relation.

Remark. The following fairly lengthy argument is illustrated by Fig. 16
(extending Fig. 13), using a notation we will now describe.

Notation 13. 1. K, = ker x, K, = ker y, K,,, = ker xy;
2. A® =Imx, AY = Imy, 4% = Im xy;
3. Ky =ylK,), K, = x[ K], K:u = x[Kq,], K;’y = y[K:w]
With R = yx~! in. the sense defined above, we will find that several of these
subspaces in fact coincide with spaces introduced previously in the analysis
of the general R,-categorical linear relation R; the others are accounted for

if that analysis is performed with a little extra care. For this reason,
Theorem 12 may be proved roughly as follows:

Step 1: Carry out the Booleanization of the lattice of spaces associated
with R.

Step 2: Describe the action of x and y on the atoms of the resulting
Boolean algebra.
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Ficure 16

In fact a rather specific Booleanization must be chosen in Step 1 in order
that the description sought in Step 2 will be available,

Throughout the rest of this section we let L be the lattice of subspaces
generated by all of the following:
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1. the chain K,, 2 K,D A%2 Z 2 A%;
2. the chain K, 2 K, 2 Av 2 Z' D A*;
3. the subspace I.

After seeing that L is a finite distributive lattice we will Booleanize it with
care, as needed for Step 2 above. A further prerequisite is

Step 2a: Booleanize L so that the additional spaces K%, K7, Kz, , and
K?Y, are in the resulting Boolean algebra.
The first order of business is to determine the structure of the lattice L.

LeMmMma 14.
1. D= A=, D' = Av;
2. Ky =12, Ky =2,
3. A4°nK,=Kj},, K.nA"=Kj,;
4, I +Z4+Z27CK.NK,.

Proof. We need prove only 4; the remaining parts are trivial. Note first
that for u, v, w € A the relation uRvRw entails u € K,,. Indeed, since we can
solve the equations

xa = u, ya="1; xb=9v, ybo=w

with @, be 4, we find yu = xya = xv = x?b = 0. Thus it follows that
I+ ZCK,. Furthermore Z'CD'CK,, so I+ Z+ Z'CK,. Similarly
I+ Z+4+ 7Z'CK,, proving 4. |

The structure of L now becomes transparent. That part of L which is generated
by the two chains Z, 4%, K, and Z’, A, K, is a homomorphic image of the
free modular lattice F(3, 3) modulo the relation (¢; + ¢';) < (¢5 N ¢’y), which
is true in L by Lemma 14.4. The additton of I is as in Section 8, Fig. 13. We
then need only add the spaces (0)C A C Z, N Z', CZ N Z' at the bottom,
and the spaces K, + K, C K,, C 4 at the top. Thus L is a homomorphic
image of the lattice in Fig. 16.

In the course of the proof of Theorem 12 (below) step 2a will present only
minor difficulties. The most troublesome spaces in this connection are KF,
and K?,. It is convenient to insert a preliminary observation couched in the
terminology of Section 8, particularly Figs. 13 and 15.

LemMma 15, Set
B=((DND)V+Z+@®Y {Kipl|2<
B =((DNDY+Z + @) {K:s 12 <
Then BC K3, and B'C K7, .

§

+ 1)),

<2
<2n 4 1))
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Proof. ‘'Trivial.

Referring to Figs. 15 and 16 and the discussion in Section 8, we recall that
D2 {Ksoll <s <2+ 1} is a complementary subspace to (DN D)4 Z
in D, We have now placed K, between (D N D) + Z and D. Lemma 15 says
that all but K , of the sum above is actually in K7, .

Proof of Theorem 12. We begin by embedding the lattice of subspaces
of A generated by {Z, Z', D, D', I} in a Boolean algebra & as prescribed in
Sections 6-8. Extend # to an algebra %, by adjoining as new atoms the space
A*¥ and a complement C} to A% in Z, .

Because x and y act trivially on K, N K, , that part of #, lying below
K;N K, need not be altered except as required by step 2a (cf. Fig. 16). But

by Lemma 15 we may account for the spaces K7, and K, as follows

Choose a complement K'; ; to B in K, and choose a complement
K" oto K7, in A® Redefine K, by setting K, g = K'; ¢ @ K", .

Notice that this procedure implies a corresponding redefinition of K, , since,
in Section 8, K, , is selected so that R induces an isomorphism K, , ~ K, , .
In particular the decomposition of K, , above induces a decomposition

Kyi =Koy @K',
and since we have
BR = B/, K;,R =K3,, AR = A",

it follows that K’y ; is a complement to B’ in K},
to KY, in Av.

Call the extension of %, defined in this way %, . Notice that the commutative
diagram

and K", is a complement

A%IKE, R » AY/K?,

{diagonally vertical isomorphisms are induced by y and x) yields a commutative
diagram

0,1
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This means that the action of x and y on the atoms of %, is known in a coherent
way.

At this stage the complement of D + D’ in %, is a single atom denoted
K,,, in Section 8. We may assume K, , = C, @ C', where C, is a complement
to K2, + K%, in K, N K, and C’; is a complement to Az + Av 4+ (K, N K)
in A. Calling the resulting Boolean algebra of spaces & , we will only find it
necessary to modify the choice of C’,.

C’, will be the direct sum of certain spaces:

C, , a complement to (K, N K,) + A% in K, ;
C,, a complement to (K, N K,) + AYin K ;
C;, a complement to K, 4 K, in K, ;

C,, a complement to K, in 4.

The selection of C; and C, is carried out bearing in mind the isomorphisms
#, & induced by y, ¥ as follows:

g1 K J(A% + (K, N K,)) ~ K| A% = Z',[ 4™,
& K, (A" + (K, N K,)) ~ K7 A% = Z,| A%,

Now Z', is a direct sum of various spaces (see Figs. 8 and 10) including Z,, ,
which has been decomposed into 4% @ C, . We select for each of the com-
ponents of Z'; , except for A%, a subspace of K, which y maps isomorphically
onto the given component; and then we define C, to be the sum of these
subspaces of K, so that C, is a sum of atoms and is a complementary subspace
to A* + (K, N K,) in K. Similarly we select a complementary subspace C,
to Av + (K, N K,)in K, .

We next construct the relative complement Cy of K+ K, in K, . As
we observed much earlier, y maps K,, to K, " D' = KY, . It is easily verified
that modulo K, + K, this map is 1-1. Similarly, modulo K 4 K, , ¥ maps
K,, isomorphically onto K, N D = K, . Thus we must find for each space
in the Booleanization of KZ, a space in K, which x maps to it, and we must
find for each space in the Booleanization of K, a space in K, which y maps
to it. Moreover, this must be done coherently. )

Thus, for example, within Z N Z' the spaces {Hyl2 <i+j<N+1
and ¢ > 2} above the bottom diagonal in Fig. 8 are not yet y-images of spaces
already selected, although those on the bottom diagonal are already x-images.
Similarly, the spaces {H;; |2 <i+j< N+ 1 and j =2} below the top
row in that diagram are not yet y-images, although those on the top row are
y-images. For each H,; where i = 2 we select a subspace Hy of K,y so that
x maps H, isomorphically onto Hj and y maps H,; isomorphically onto
H;_, j;1- This is done using the fact that R maps H,, isomorphically on
H,_, 41 ; indeed, if we choose a basis {v,} for H;; and a basis {w,} for Hi 514
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so that v,Rw, for all ¢, we can let H,; be spanned by {a,} where for each ¢,
v, = xa; and w, = ya, . '

The same procedure is employed for the spaces {G; ;} which complement
ZNZ'in Z, and for the ;(g;ces {G';;} which complement Z N Z’ in Z’. Thus
for each G, s in Fig. 9 with i = 1 we use the fact that R maps G, , isomorphically
onto G;_,; to select a space G, ; such that x maps G, , isomorphically onto
G,; and y maps G,; isomorphically onto G, 1,5+ Note that the spaces
{G1;11 <j < N}areallin Z, and hence are already x-images and the spaces
{G;; 11 < ¢ << N} form the complement of 4Y N Z in Z, hence are not in
K3, , and so cannot be y-images at all. Similarly we select a space G',; for each
Gyl <i<j<n

Slmllarly for each space C;, which is part of the complement of Z N Z’
in I, we choose a space C, ; so that x and y each map C,.; isomorphically onto
C,,; ; using the invariance of C,; under R, the selection of C 5.+ Can be made
$0 as to guarantee, as in the cases already discussed, that the diagram

/\

’Cst

commutes,

Finally, referring to Fig. 15; we note that the spaces- K, correspondmg
to the P, in the bottom diagonal are not in K3, and the spaces K; corresponding
to the P,; in the top row are not in KZ, . Thus we can complete our construction
of a complementary space of K, + K, in K,, by selecting a space K, for each
K;; with i > j; as before, this can be done so that the diagram

K,
K;, e R

» K5

commutes. Thus
Z@{Hﬁ |i>2}@2@{G_ﬁ|i> 1}
@Y {GHi<j @Y ®{C,
@Z{Kii |i>f}

is the appropriate complement to K, + K, in K, .

Finally, we must choose a relative complement to K,, in A. We recall that
K,,o is the complement of K7, in A4® and that K, , is the complement of K7
in 4%, and that R takes K, , isomorphically onto K, ,. We therefore choose
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a space K, so that x maps K, isomorphically onto K , and'y maps K, ,
isomorphically onto K;, and the maps commute. We claim that K, 4 is a
complement to K,, in A. Indeed, let ac A and write xa = v, + v,, where
v, € K, gand v, € K7, ; we obtain xa = xa, + xa, where a; € K; gand a, € Ky .
Hence @ — (@ + @))€ K, 50 a = @, + b where be K, ; thus the claim is

verified. This completes the proof of the theorem. i

The final step in the characterization of the X,-categorical groups G in our
class is to show that G is Ro-categorical iff 4 is an R,-categorical S-module.
Since we prefer to discuss this in greater generality, we defer its proof to the
Appendix. However, assuming its correctness, we can conclude that G is an
®,-categorical group iff the associated linear relation (A4; R) is K-categorical.

This criterion is well adapted to the situation.in which an Abelian by finite
group G is presented explicitly in terms of a normal Abelian subgroup 4 of
finite index in G and of bounded exponent, and generators gy, £ -+ gr of G
over A, assuming that for each prime p:

(a) If p divides | G/4 |, then A has no element of order p?, and
(b) if G/A has a noncyclic Sylow p-subgroup P, then p,=2 and
P = Zz X Zg .

Namely, one must choose words o, w in the {g;} representing generators
of P (modulo A), and compute the action of v and w on A via commutation,

fiar—>avalol, gia—> awa~lw!

corresponding to the operators 1 — 9, 1 — = in the group ring. Finally, it
must be decided, in terms of the criteria of Theorem 1, whether the structure
{A; R) is Ry-categorical, where

Rab iff (3o)(f(cL= aand g(c) = b).

In practice, as the examples illustrate, this tends to be a straightforward matter,
even though the application of Theorem 1 cannot really be called an algorithm.

10. CONCLUDING REMARKS

The motivation for the research reported on in this article was to extend
the results of [9] on X,-categorical Abelian by finite groups to the case where
the Sylow p-subgroup of G/4 was not necessarily cyclic. In the simplest case,
where A has exponent 2 and G[A ~Zy X Z, we have succeeded—but only
because the group-theoretical and lattice-theoretical machinery is available.
Thus, the lattice L of vector spaces defined in Section 6 is essentially generated
by two chains and is therefore distributive, a basic fact for our analysis. The
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corresponding lattices in the next simplest cases, where 4 has exponent 2
and G/4 ~7, X Z, x 7, and where 4 has exponent 3 and G/4 ~ 7, x Z,,
do not in general have this property. Thus any further research in this direction
seems to require a still more elaborate analysis than that presented here.

APPENDIX: &,-CATEGORICAL MODULES

Our purpose here is to justify two claims referred to in the text. Both of
these claims are immediate consequences of Theorem 16, and are contained
in Theorem 17.

THEOREM 16.  Suppose that G is a group with an Abelian normal subgroup A
and finite factor group F — G|A. For each prime p, let A, be the p-primary
component of A and let F, be a Sylow p-subgroup of F. Then the Jollowing are
equivalent:

(1) G is 8y-categorical.
(2)  The Z[F]-module A is Ry-categorical.

(3) A4 has finite exponent and, for each prime p, the Z[F,)-module A, is
Ry~-categorical.

THEOREM 17. (1) Let G be a group with a normal Abelian subgroup A of
exponent 2 such that G|A ~17, X 7, and let S = Fy[Z, X Z,). Then G is an
Ro-categorical group if and only if A is an Ro-categorical S-module.

(2) Let G be a group with a normal Abelian subgroup A of square-free
exponent and finite index. Assume that every Sylow p-subgroup of G/A is cyclic.
Then G is Ry-categorical.

The proof of Theorem 16 relies on two facts concerning general R-cate-
gorical modules,

THEOREM 18. Let B be an Ry-categorical module with submodule A. If either
of the following holds then A is Ny-categorical:

(1) A is a direct summand of B.
(2) B/A is finite.
Theorem 18 depends heavily on the theory of Rj-categorical modules as

developed by Baur [2] and reviewed below. Before discussing this material,
we will show that Theorem 16 is indeed a consequence of Theorem 18.

Proof of Theorem 16. (2) = (1): Given that 4 is Ry-categorical as a Z[F]-
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module, the same is true of a disjoint sum of a finite number of copies of 4.
That is, if we define a structure

P — (P, A, {f, | reZ[F}, Ay, Ag ey An s 81 82 1101 BnDs
where (a) P is the disjoint union of A, A4,, Ay ..., Ay
(b) <4, {f,|r€Z[F]}) is the Z[F] module 4;
(c) each g;is a 1-1 correspondence A2 A,

then 2 is also R,-categorical.

Now suppose that | G[4 | =n and that 1, &, , hy,..., h, are a complete
set of coset representatives of G/A. We can then locate G within # by viewing
A, as the coset Ah;, where ga) is identified with @k, . To show that G is
K,-categorical it suffices to show that G is definable in 2, that is, that the multi-
plication of G is definable in #. Now (ah;)(bh;) = a(hbhi")(hhy). The map
b — hbh" is represented in # by an element of Z[F], that is, hbhit = fa(b)
for all be A for some (i) e Z[F]. Also hh; = a(i, j)he.» where a(f,j) € 4. 1t
follows that the group G is definable in the structure (2, {a;; | 1 < i, ] < np
since the rule & -y = & of multiplication of G is defined by the disjunction
of (n + 1)? formulas of the type

Fa)@)x = ga) Ay = &) A 2 = gra.(@ -+ fra(®) + a6, 1))-
Since (2, {a(i,j) | 1 <1i,j < n}) is Ry-categorical, the same is true of G.

(1) = (2): In general 4 will not be definable in G. If, however, we let C
be the centralizer of 4 in G and let B be the center of C, then

ACBCC

are all normal in G and B is in fact a definable Abelian normal subgroup of G.
To see this, it suffices to check that C is definable; but C is in fact the centralizer
of a finite subset of G (since C is the centralizer of some subset of G,and [G : C]
is finite).

Now B may also be viewed as a Z[F]-module, definable over G, and hence
B is an R-categorical Z[F]-module. But then, by Theorem 18.2, since BJA
is finite, A4 is an Ry-categorical Z[F]-module.

(2) = (3): Obvious.

(3) = (2): Since 4 is the finite direct product of the Z[F]-modules A4,
it suffices to show that each A4, is R-categorical as a Z[F]-module. Let 4 denote
A, considered as a Z[F J-module, and let A, denote 4, considered as a Z[F,]-
module; 4, is R,-categorical by assumption.

We apply a theorem of Higman from the theory of relatively projective
modules and induced representations (see Curtis and Reiner [5, Sect. 63]).
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Let 4,F be the Z[F]-module induced from 4 »+ Then Higman’s theorem says
that since F, is a Sylow p-subgroup of F, 4 is a direct summand of AF. Now
A" is definable over 4, since it is the finite direct sum of copies of A, with
a definable F-action. Thus 4,F inherits the Ry-categoricity of 4, , and the same
applies to 4 by Theorem 18.1, Thus 4 is an R-categorical Z[F] module. |

Let us now review Baur’s theory. Note the important role played by those
modules satisfying the property that every finite subset is contained in a finite
direct summand.

Fact 19 (Baur [2]). Let M be a countable module. Then the following
are equivalent:

(1) M is Ry-categorical;
(2) every finite subset of M is contained in a finite direct summand

of M and M has only finitely many distinct (up to isomorphism) finite indecom-
posable direct summands;

(3) there are finitely many indecomposable modules M, such that
M admits a direct sum decomposition M ~ ®> M,;; with M;; ~ M, for

Before remarking on the proof of Fact 19, we recall that a submodule M C N
is pure in N if any system of linear equations with parameters in M which
is solvable in N is already solvable in M. If M is a direct summand of N, then
clearly M is pure in N. The converse is false in general; if, however, M is finite,
then M pure in N implies that M is a direct summand of N, (Lemma 3 of
Baur [2] strengthens this remark.) This fact is used to construct inductively,
for any module satisfying (2), a decomposition satisfying (3); to continue
the inductive construction, the countability of M is also necessary. T'o prove
that (3) = (2), the same fact is used, together with the Krull-Schmidt Theorem
on uniqueness of decompositions (see Curtis and Reiner [5]). That (3) = (1)
is clear. The proof that (1) = (2) is a central argument in Baur [2] and our
proof of Theorem 18.1 is patterned on and requires familiarity with Baur’s
argument. We prove Theorem 18.1 in the following stronger form.

THEOREM 20. Let N be an Ry-categorical module and let M C N be a pure
submodule. Then M is Ry-categorical. B

Proof. By the Lowenheim-Skolem Theorem it suffices to prove this for the
case where NV is countable. We claim that } then satisfies condition (2) of
Fact 19 and hence is Ry-categorical.

Let I be a finite indecomposable direct summand of M. Baur showed that
if V is Ry-categorical, then any finite subset of NV is contained in a finite direct
summand of N; in particular, I C J where ] is a finite direct summand of N,
Since I is pure in M and M is pure in N, it follows that 7 is pure in N, and
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hence is pure in J. By the fact mentioned earlier, I is a direct summand of |
and hence of N. Thus every finite indecomposable direct summand of M
is also a direct summand of Nj; since N is R-categorical, there can be only
finitely many such 7, up to isomorphism.

Thus it suffices to show that every finite subset M, C M is contained in a
finite direct summand of M. As in Baur’s argument, it suffices to find a number
k such that any system of linear equations with parameters in M, which is
solvable in M has a solution {ay, @, ,..., @,y containing at most k distinct
elements of M. This property is, however, inherited from , where it follows
from N,-categoricity, as shown in Baur [2]. Indeed, if I" is a linear system
defined over M, , as above, and solvable in M, then it is also solvable in N,
and so has a solution in N with at most & different elements. If we specialize r
to a system I involving altogether only & distinet variables, then the solvability
of I in N entails its solvability in M (by purity); this gives a solution to I
in M having only k distinct elements of M. Thus the bound % for M may be
taken to be equal to the given bound for N.

Hence M satisfies condition (2) of Fact 19 and hence is R,-categorical. [l

Examples of non-R,-categorical submodules of R;-categorical modules
abound. For example, any Z,[1]-module is N,-categorical (since it is essentially
an Abelian-by-cyclic group of the type considered in [9]) as is any module
induced from a Z,[1]-module. But every module M over a group algebra
Z,[H] of a finite group H is a submodule of a module induced from a Z,[1]-
module. (This observation arises in the context of Higman’s Theorem cited
above.)

We will now prove a result slightly stronger than Theorem 18.2.

THaEOREM 21. Let M be an R,-categorical module, A a finite Abelian group,
and h: M — A a group homomorphism. Then the structure (M, A, k> (where,
of course, M is equipped with module operations) is Ry-categorical.

Proof. Note in particular that given a short exact sequence 0—>M —
M-"» M" — 0 with M’ Ro-categorical and M" finite, then M" = ker = is
definable and hence Ry-categorical; this is Theorem 18.2.

We may assume, without loss of generality, that M is countable. Then,
by Baur’s Theorem, there are finitely many finite modules M; and a decom-
position M = @ Y, M;; with My ~ M; for each j, 1 < j < n; < w. Define
(ly; = {My , A, hyy> where hy; is h restricted to M,; . There are only a finite
number of isomorphism types among the structures (7, and, after a change
of notation, we may assume that for each fixed ¢ the structures 0ty are all
isomorphic to a structure 7; = (M, A, hp>. For eachi let#; = (M*;, A, h*y)
where M*, — M{"" and h*(m*) =3; h(m™;) for m* e M*, . Since (M, A, by ~
(@Y M*;, A, ®Y. k*p, it suffices to show that each %, is R,-categorical.

As a preliminary step we construct a number of automorphisms of 4; which
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will be used to obtain a bound on the number of n-types of &, . Let r be the
characteristic of the base ring R (which we assume to be finite), let s = 1 (mod r),
let jo < m;, and let [ be a set of s — 1 distinet integers each less than »; but
not including j, . Given s, j,, and J, we define an automorphism @ of M*, by

[6(m*)]; = m,* if j¢ ],

=m* —m* if je]
Evidently 6 is a module isomorphism and k¥ (§(m*)) — ht(m*) —
(s —1) hm*; ) = h*(m*) so that 0 is an automorphism of # which fixes 4.

Using these automorphisms it is casy to show, by induction on #, that there
is a number f(#) such that any n-tuple 1 of elements of M*, can be mapped,
by an automorphism of 4, , to an n-tuple ¢’ of elements of M*, , each of which
has all of its nonzero coordinates in the first f(n) places. Thus the number
of n-types of elements of M*, is bounded for each 7 and hence &, is R -cate-
gorical, as was to be proved. [

We have now completed the development of the relevant supplementary
module-theoretic information bearing on X,-categorical Abelian by finite
groups. We conclude with an additional result in the same vein, which we
present for its own intrinsic interest,

THEOREM 22. If 0> M' > M5 M" 0 is a short exact sequence of
R-modules with M’ finite and M" Ry-categorical, then M is R,-categorical.

Proof. 'Take M countable and R finite. If we view M’, M. and M" as Abelian
groups, then, by the X-categoricity of M, M" and hence also M are of bounded
order; hence, by the structure theory of Abelian groups of bounded order,
M’ can be extended to a finite direct summand M, of M. 'Thus, as an Abelian
group, we can write M = M, (& M, , where M, D M’ and is finite. Then
if we define M*, = w(M,) and M”", = m(M,), we see that M", ~ M,/M’ and
M’y ~ My and M" = M", @ M",.

Since M" is an Ry-categorical module, the finite subgroup M", can be extended
to a finite module direct summand M’ of M”. Thus we can write M" =
My & M"y , where My and M", are submodules of M", and by Theorem 18,
M’ is an Ry-categorical module, Note also that if we define My = = 1[M",],
then My 2 M, . Furthermore, the composite homomorphism

m w1
x: M <> M "% app '~ M,

is @ monomorphism of Abelian groups, so that My = y(M”",) is a subgroup of
M), . Actually, since M", is a direct summand of M", M", is pure in M" and
hence is pure in M, . It follows that M, is a pure subgroup of M, . Since
M, is a pure subgroup of M, and M, is a group of bounded order, it follows



R,-CATEGORICAL GROUPS 225

that M, is a direct summand of M, (see Kaplansky [8]) so that we can write
M, = M, ® M, as groups. Thus we have M = My ® M,, where My =
M, © M.

Summarizing, we have shown that M has a subgroup M, which is a direct
summand of M of finite index; furthermore the submodule M", of M" of
finite index which is ®,-categorical is, as a group, isomorphic to M, . Although
M, is not necessarily a submodule of M, for each y(m)e My, rx(m) is defined
and m(ry(m)) = rm. On the other hand, for me M"y, rme M"; so that
x(rm) e M, and w(y(rm)) = rm. Hence ry(m) — x(rm) € ker(m). Thus for each
re R we can define f: M"y— Mg by fi(m) = rx(m) — x(rm). This gives
ry(m) = f(m) + x(rm), so that scalar multiplication on M, can be recovered
from {f, |7 € R}. These maps f, are additive, and may be combined into a
single map . _
(xf)eV: M"y — Mg",

where N = card(R) and V(m) = (m, m,..., m) is the diagonal map. By the
previous theorem, the structure

O, = {M"y, Mg¥, X fro V)
is K,-categorical, from which it follows that
A= M'y, Mg;{fr|r€RD
is ®,-categorical. From (¥ we can recover the module structure of M by taking
(1) M = My @® M", as Abelian groups;
(2) r(mg+ m"y) = rmg+ ( fm"y) 4 rm"y).

Here, since M, is finite and R is finite, the products 7m, are given explicitly,
f(m"y) is computed in ¢, and rm’", is compuited in the module M", in a.
Thus the module M is definable over (% and is therefore X, -categorical. [}
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